预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习的LSTM光伏预测 Title:LSTM-basedDeepLearningforPhotovoltaicPowerGenerationPrediction Abstract: Asrenewableenergysourcesincreasinglycontributetoelectricitygeneration,accuratelypredictingthepoweroutputofphotovoltaic(PV)systemsbecomescrucialforoptimizingtheirintegrationintothegrid.Traditionalforecastingmethodsoftenrelyonstatisticalmodels,whichmaynotcapturethecomplexpatternsanddynamicsinherentinPVdata.ThispaperproposesadeeplearningapproachbasedonLongShort-TermMemory(LSTM)neuralnetworksforPVpowerprediction.LSTMiswell-suitedfortimeseriesdatawithlong-rangedependenciesandhasbeenproveneffectiveinvariousapplications.TheproposedLSTM-basedmodeltakesintoaccounthistoricalweatherconditions,solarirradiance,andotherrelevantfactorstoforecastthepoweroutputofPVsystems.Themodel'sperformanceisevaluatedusingreal-worlddata,andtheresultsarecomparedwiththoseoftraditionalforecastingmethods.ThefindingsdemonstratethattheLSTM-basedpredictionmodeloutperformstraditionalmethods,highlightingitspotentialforimprovingtheaccuracyofPVpowerforecastsandfacilitatingtheintegrationofrenewableenergysourcesintotheelectricitygrid. 1.Introduction 1.1Background 1.2Motivation 1.3Objectives 2.LiteratureReview 2.1PhotovoltaicPowerPrediction 2.2TraditionalForecastingMethods 2.3DeepLearningandLSTM 2.4RelatedWorksonLSTMforPVPrediction 3.Methodology 3.1DataCollectionandPreprocessing 3.2LongShort-TermMemory(LSTM) 3.3ModelArchitecture 3.4TrainingandTestingProcess 4.ExperimentalResults 4.1DatasetDescription 4.2EvaluationMetrics 4.3ComparisonwithTraditionalMethods 4.4SensitivityAnalysis 5.Discussion 5.1AnalysisofResults 5.2LimitationsandFutureDirections 5.3ImplicationsforGridIntegrationofPVSystems 6.Conclusion 6.1SummaryofFindings 6.2Contributions 6.3PracticalApplications 7.References 1.Introduction 1.1Background Theproliferationofphotovoltaic(PV)systemsasaviablerenewableenergysourcehasledtoanincreasedneedforaccuratepowergenerationpredictions.PVsystemsarehighlydependentonweatherconditions,solarirradiance,andotherfactorsthati