预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于动态网络表示的链接预测 Title:LinkPredictionBasedonDynamicNetworkRepresentation Abstract: Linkpredictionisanessentialtaskinnetworkanalysisthataimstopredictmissingorfutureconnectionsinanetwork.Traditionallinkpredictionmethodsoftenrelyonstaticnetworkrepresentationsandignorethedynamicnatureofnetworks.However,manyreal-worldnetworksaredynamic,constantlyevolving,andchangingovertime.Dynamicnetworkrepresentationmethodscapturethetemporaldynamicsandchangingpatternsofnetworks,providingamoreaccurateandeffectiveapproachforlinkprediction.Thispaperexplorestheconceptofdynamicnetworkrepresentationsandpresentsanoverviewofvariousapproachesandtechniquesusedforlinkpredictionbasedondynamicnetworkrepresentation. 1.Introduction: Therapiddevelopmentofnetworkanalysishasledtogrowinginterestinlinkprediction,asithasnumerousapplicationsinvariousdomainssuchassocialnetworks,biologicalnetworks,transportationnetworks,andrecommendationsystems.Linkpredictionmethodsaimtoestimatethelikelihoodofalinkoredgebetweentwonodesinanetwork.Traditionallinkpredictionmethodsoftenusestaticnetworkrepresentations,whichtreatthenetworkasasnapshotataparticulartime.However,staticrepresentationsfailtocapturetheevolutionandtemporaldynamicsofnetworks,resultinginlimitedaccuracyandpredictivepower.Incontrast,dynamicnetworkrepresentationsincorporatetemporalinformation,enablingmoreaccuratepredictionsoflinkformationordisappearanceovertime. 2.DynamicNetworkRepresentation: Dynamicnetworkrepresentationmethodsaimtoencodethetemporalinformationofnetworksintoalow-dimensionalvectorspace.OneofthemostwidelyusedtechniquesisTemporalGraphConvolutionalNetworks(TGCN),whichextendstraditionalGraphConvolutionalNetworks(GCN)tocapturethedynamicnatureofnetworks.TGCNappliesatemporalattentionmechanismtofocusonrecentinteractionsandutilizepreviousrepresentationstopredictfuturelinks.AnotherapproachisDynamicEmbeddingofSocialNetworks(DyETC),whichcombinesrecurrentneuralnetworkswithgraphembeddingtechniquestomodelthedynamicchangesofnetworkstructuresandnodeattributesoverti