基于总体经验模态分解和CoDE-BP短期风速预测.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于总体经验模态分解和CoDE-BP短期风速预测.docx
基于总体经验模态分解和CoDE-BP短期风速预测标题:基于总体经验模态分解和CoDE-BP的短期风速预测摘要:随着可再生能源的快速发展,风能作为一种重要的可再生能源得到了广泛应用。然而,风能的不稳定性和波动性导致了对风速进行准确预测的需求。本文提出了一种基于总体经验模态分解(EMD)和改进型差分进化粒子群优化算法(CoDE-BP)的短期风速预测方法。该方法首先利用EMD将原始风速序列分解为多个纯频带分量,并通过统计学方法调整每个分量的平均值和方差,进一步提升对周期性和趋势性的预测能力。然后,使用CoDE-
基于改进快速集合经验模态分解和Elman-Adaboost的短期风速预测方法.docx
基于改进快速集合经验模态分解和Elman-Adaboost的短期风速预测方法论文题目:基于改进快速集合经验模态分解和Elman-Adaboost的短期风速预测方法摘要:随着风能的不断开发利用,短期风速预测在风力发电系统中具有重要意义。本文提出了一种基于改进快速集合经验模态分解(EEMD)和Elman-Adaboost(EAB)的短期风速预测方法。首先,通过EEMD将原始风速时序数据分解为若干固有模态函数(IMFs)。然后,利用改进的EEMD方法减小模态混叠问题,提高IMF的质量。接着,采用多层感知器(ML
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究.docx
基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究摘要:随着可再生能源的快速发展,风力发电被广泛应用于电力系统中。然而,风速预测的准确性对风力发电系统的运行和调度至关重要。本文提出了一种基于集合经验模态分解(CEEMD)和套索算法的短期风速组合变权预测模型。首先,利用CEEMD将原始风速序列分解为一系列本征模态函数(IMF)。然后,使用套索算法进行特征选择,从而筛选出对风速预测具有重要影响的IMF。接下来,根据IMF的重要性,使用线性组
基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测.docx
基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测基于变分模态分解和蝙蝠算法-相关向量机的短期风速区间预测摘要:短期风速预测在能源领域中具有重要的应用价值。为了提高短期风速预测的准确性和稳定性,本文提出了一种基于变分模态分解(VMD)和蝙蝠算法(BA)-相关向量机(RVM)的短期风速区间预测方法。该方法以历史风速数据作为输入,通过VMD对风速数据进行模态分解,得到多个不同频率的振动模态。然后使用BA-RVM训练模型,并通过交叉验证法选择最优模型。最后,利用训练好的模型对未来一段时间内的风速进行预测,
基于经验模态分解法的短期负荷分层预测.docx
基于经验模态分解法的短期负荷分层预测基于经验模态分解法的短期负荷分层预测摘要:短期负荷分层预测是电力系统调度和能源市场运营的重要工具,可以提高电力系统的安全性、经济性和可靠性。本文基于经验模态分解法(EmpiricalModeDecomposition,EMD)对短期负荷进行分层预测,利用EMD将负荷序列分解为多个本征模态函数(IntrinsicModeFunctions,IMF),并通过对IMF进行建模和预测得到最终的负荷预测结果。实证研究表明,基于EMD的短期负荷分层预测方法具有较高的准确性和可靠性,