预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进多重极限学习机的槽电压优化方法 Title:ANovelSlotVoltageOptimizationMethodbasedonImprovedMultipleDeepLearningMachines Abstract: Theslotvoltageoptimizationisacrucialaspectofpowersystemoperationandcontrolasitdirectlyinfluencesthestabilityandefficiencyofpowertransmissionanddistribution.Inthispaper,weproposeanovelslotvoltageoptimizationmethodbasedonanimprovedmultipledeeplearningmachines(MDLMs).Theproposedmethodaimstoenhancetheaccuracyandefficiencyofpowersystemslotvoltageoptimization,tacklingthechallengesposedbycomplexpowersystemdynamicsanduncertainties.Themethodencompassesthreekeysteps:datapreprocessing,improvedMDLMtraining,andslotvoltageoptimization.Extensivesimulationexperimentswereconductedonarealisticpowersystemnetwork,demonstratingthesuperiorityoftheproposedmethodintermsofconvergencespeedandaccuracycomparedtoexistingmethods. 1.Introduction Theoptimizationofslotvoltageplaysapivotalroleinpowersystemoperationandcontrol.Anappropriateslotvoltagenotonlyensuresthestabilityofpowertransmissionanddistributionbutalsoimprovessystemefficiency.Traditionaloptimizationmethodsoftenrelyonmathematicalmodels,whichmaybelimitedbytheaccuracyofthesemodelswhenfacedwithcomplexsystemdynamicsanduncertainties.Toovercometheselimitations,theapplicationofdeeplearningtechniqueshasshowngreatpotentialinsolvingpowersystemoptimizationproblems.ThispaperpresentsanimprovedMDLM-basedslotvoltageoptimizationmethod,whichcaneffectivelyhandlethecomplexitiesanduncertaintiesofpowersystems. 2.ProblemFormulation Theslotvoltageoptimizationproblemisformulatedtofindtheoptimalvoltagesettingsforeachslotinthepowersystemnetwork.Theobjectiveistominimizetheoverallpowerlosswhilesatisfyingvariousconstraints,suchasvoltagelimitsandreactivepowerlimits.Traditionally,thisproblemissolvedusingmathematicaloptimizationalgorithms,whichmaynotbecapableofhandlingcomplexanduncertainpowersystemdynamics.Deeplearningtechniqueshaveemergedasapromisingalternativeforsolvingsuchoptimizationproblemsduetotheircapacitytolearncomplexpatternsfromlargeamountsofdata