预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于分段核函数的SVM入侵检测方法 Abstract Intrusiondetectionisanimportantaspectinthefieldofnetworksecurity,whichhelpsintheidentificationofpotentialsecuritythreatsandharmfulactivitiesinanetwork.Inthispaper,weproposedasupportvectormachine(SVM)basedintrusiondetectionsystemusingasegmentedkernelfunction.Thesystemactsasabinaryclassifierthateffectivelyseparatesnormalnetworktrafficfrommaliciousactivities.ThesegmentedkernelfunctionhelpsinimprovingtheclassificationaccuracyoftheSVMmodel.Experimentalresultsobtainedindicatethattheproposedsystemishighlyefficientandoutperformsexistingintrusiondetectionsystems. Introduction Intrusiondetectionisanimportantaspectofnetworksecuritythathelpsindetectingpotentialsecuritythreatsandharmfulactivitiesinanetwork.Thisinvolvesthemonitoringofnetworktrafficandtheidentificationofactivitiesthatdeviatefromnormalbehavior.Intrusiondetectionsystems(IDS)areusedtodetectnetworkattacks,suchasdenial-of-service(DoS)attacks,bufferoverflowattacks,andothers,andtheyarecommonlyusedindifferenttypesofnetworks,includingLANs,WANs,andtheinternet. Intrusiondetectionsystemscanbeclassifiedintotwocategories:signature-basedandanomaly-based.Signature-basedintrusiondetectionsystemsusepredefinedattacksignaturestoidentifythreats,whileanomaly-basedintrusiondetectionsystemsrelyonstatisticalormachinelearningtechniquestoidentifyabnormalnetworkactivity.Machinelearningapproaches,suchasSVM,havebeenshowntobeeffectiveinintrusiondetectionduetotheirabilitytohandlelargeamountsofdataandtheirabilitytolearnfromexamples. Inthispaper,weproposedasupportvectormachine(SVM)basedintrusiondetectionsystemusingasegmentedkernelfunction.TheSVMmodelactsasabinaryclassifierthateffectivelyseparatesnormalnetworktrafficfrommaliciousactivities.ThesegmentedkernelfunctionhelpsinimprovingtheclassificationaccuracyoftheSVMmodel. RelatedWork Machinelearning-basedintrusiondetectionsystemshavebeenwidelystudiedinrecentyears.SVM,inparticular,hasbeenshowntobeeffectiveinintrusiondetectionduetoitsabilitytohandlelargeamountsofdataanditsabi