预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于事件驱动的实时业务审计平台设计及实现 Title:DesignandImplementationofanEvent-drivenReal-timeBusinessAuditPlatform Abstract: Thispaperexploresthedesignandimplementationofanevent-drivenreal-timebusinessauditplatform.Intherapidlychangingbusinesslandscape,organizationsfaceincreasingchallengesinensuringtransparency,compliance,andsecurity.Thisplatformaimstoaddressthesechallengesbyleveragingevent-drivenarchitectureprinciplestoprovidereal-timevisibility,monitoring,andauditingofbusinessoperations.Thepaperdiscussesthearchitecture,keycomponents,andimplementationdetailsoftheplatform. 1.Introduction: Withtheriseofdigitaltransformations,businessesaregeneratinganabundantamountofdatafromvarioussources.However,organizationsoftenstruggletogainreal-timeinsightintobusinessoperations,leadingtoinefficiencies,financiallosses,andsecurityrisks.Areal-timebusinessauditplatformcanhelpaddressthesechallengesbyprovidingacomprehensiveviewofbusinessactivitiesanddetectinganomaliesinreal-time. 2.Architecture: Theplatformisbuiltonanevent-drivenarchitecture,whereeventsrepresentsignificantbusinessactivities.Thearchitectureconsistsofthreelayers:datacollectionandeventgeneration,eventprocessing,andreportingandvisualization. 2.1DataCollectionandEventGeneration: Variousdatasourceswithintheorganization,suchastransactionlogs,applicationlogs,andsystemmetrics,arecollectedinreal-time.ThesedatasourcesareintegratedintoanEventCollector,whichprocessesincomingdataandgenerateseventsbasedonpredefinedtriggersorrules. 2.2EventProcessing: TheEventProcessinglayerisresponsibleforanalyzingandprocessingtheeventsgeneratedinreal-time.Itconsistsofmultiplecomponents,includingeventcorrelationengine,anomalydetectionmodule,andruleengine. 2.2.1EventCorrelationEngine: Theeventcorrelationengineanalyzestherelationshipsamongdifferenteventstoidentifypatternsandassociations.Ithelpsinunderstandingthecontextofeventsanddeterminingtheirsignificanceintheoverallbusinessoperation. 2.2.2AnomalyDetectionModule: Theanomalydetectionmoduleemploysmachinelearningtechniqu