预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于SVM和能量最小化的PolSAR图像分类方法 Title:SVM-basedPolSARImageClassificationMethodwithEnergyMinimization Abstract: PolSAR(PolarimetricSyntheticApertureRadar)imageclassificationplaysacriticalroleinvariousremotesensingapplications,suchaslandcovermapping,targetdetection,andenvironmentalmonitoring.Inthispaper,anovelclassificationmethodcombiningSupportVectorMachines(SVM)andenergyminimizationisproposedforPolSARimageclassification.TheproposedmethodtakesadvantageofSVM'scapabilitytohandlehigh-dimensionaldataandoffersrobustnessagainstnoiseandsparsesamples.Furthermore,energyminimizationtechniquesareemployedtorefinetheclassificationresultsandenhancetheoverallaccuracy. Keywords:PolSAR,classification,SVM,energyminimization,remotesensing 1.Introduction PolSARimaging,asanactiveremotesensingtechnique,capturesthefullpolarimetricinformationofasceneusingradarsensors.PolSARdataprovidesvaluableinformationaboutthescatteringmechanismsandtargetcharacteristics,enablingamoreaccurateclassificationofdifferentlandcovertypes.TraditionalPolSARimageclassificationmethodsoftenrelyonstatisticalmodelsorclusteringalgorithms,whichmaynoteffectivelyexploitthecomplexscatteringbehaviorspresentinPolSARdata.Therefore,thereisaneedfornovelmethodstoimprovetheaccuracyandreliabilityofPolSARimageclassification. 2.SupportVectorMachines(SVM) SVMisapowerfulmachinelearningalgorithmthathasbeenwidelyutilizedinremotesensingapplications.SVMusesahyperplanetoclassifydatapointsinahigh-dimensionalfeaturespace,aimingtomaximizethemarginbetweenclasses.SVMhastheabilitytohandlehigh-dimensionaldataandisrobustagainstnoiseandsparsesamples,makingitsuitableforPolSARimageclassification.Inthispaper,weemploySVMastheinitialclassifierforPolSARimageclassification. 3.EnergyMinimization Energyminimizationtechniqueshavebeenwidelyusedincomputervisionforimagesegmentationandclassificationtasks.Inourproposedmethod,energyminimizationisemployedtorefinetheinitialclassificationresultsobtainedfromSVM.Energyminimizationaimstooptimizeanobjectivefunctionbyiterativelymi