基于卷积神经网络和不完整步态周期的步态识别方法.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于卷积神经网络和不完整步态周期的步态识别方法.docx
基于卷积神经网络和不完整步态周期的步态识别方法标题:基于卷积神经网络和不完整步态周期的步态识别方法1.引言步态识别是一种基于人体行为动作的生物识别技术,广泛应用于个体识别、跟踪和安全监控等领域。在实际应用中,往往面临步态数据不完整的问题,即步态周期中存在缺失或部分数据被遮挡。本论文旨在探索一种基于卷积神经网络(CNN)和不完整步态周期的步态识别方法,提高步态识别的准确性和鲁棒性。2.相关研究2.1步态识别方法传统的步态识别方法主要依靠手工设计的特征提取器和分类器。然而,手工设计的特征提取器通常无法准确地捕
基于图卷积网络的步态识别方法.pdf
本发明公开了基于图卷积网络的步态识别方法,具体按照以下步骤实施:步骤1、获取行人步态训练数据;步骤2、对步骤1得到的训练数据进行预处理,再利用分区策略对预处理得到的图像求取图像各分区重心得到训练样本;步骤3、搭建图卷积网络;步骤4、设计损失函数;步骤5、初始化神经网络参数;步骤6、训练搭建好的神经网络,将步骤2得到的训练样本作为输入,对应的实际身份标签作为输出,成批次地输入到网络中,计算前向传播的损失,使用反向传播算法,调整各层神经元参数;步骤7、使用训练好的神经网络进行识别,得到未知身份样本的身份信息。
一种基于反馈权重卷积神经网络和胶囊神经网络的步态识别方法.pdf
本发明公开了一种基于反馈权重卷积神经网络和胶囊神经网络的步态识别方法,具体包括以下步骤:将一对步态能量图作为网络的输入;从底层开始匹配输入图像的特征;用卷积神经网络提取输入图像的步态特征;通过像素级反馈权重更新输入图像;使用初级胶囊神经网络将数据形状进行重塑;使用改进的胶囊神经网络输出图像的相似性。该方法在数据集较小的情况下具有较强的鲁棒性,能有效地体现身体不同部位对步态识别准确率的重要性,采用向量的方式表示实体,保留了步态特征的等变性,有效提高了跨视角步态识别的准确率。
一种基于卷积神经网络的步态周期检测方法.pdf
本发明提供一种基于卷积神经网络的步态周期检测方法,对步态视频进行预处理,包括视频解码,行人轮廓提取和质心归一化的图像预处理操作;训练用于提取步态周期性特征的卷积神经网络;将待测的步态视频帧序列送入卷积神经网络中,输出波形经过滤波后,通过确定相邻的波峰与波谷的位置即得到一个步态周期。该方法对角度变化、服饰和携带物变化都有很强的鲁棒性,解决了在正面和背面视角下难以检测步态周期的问题,本发明方法对提高复杂环境中步态识别精度有重要意义,可用于步态识别中的前端,适用于安全监控、人机交互、医疗诊断和门禁系统等中的身份
基于双层卷积神经网络的步态识别算法.docx
基于双层卷积神经网络的步态识别算法基于双层卷积神经网络的步态识别算法摘要:随着智能科技的发展,步态识别作为一种独特的生物特征识别技术,在安防、医疗和人机交互等领域具有广泛的应用前景。本文针对步态识别问题,提出了一种基于双层卷积神经网络的步态识别算法。首先,对原始步态序列进行预处理,提取有效的特征。然后,通过第一层卷积神经网络对特征进行初步的提取和学习。接着,通过第二层卷积神经网络将提取的特征进行进一步的学习和分类。最后,通过实验验证了本算法的有效性和准确性。关键词:步态识别、卷积神经网络、特征提取、分类1