预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

具有双时滞的SEIR疾病模型的Hopf分支分析 Title:HopfBifurcationAnalysisofSEIRDiseaseModelwithDoubleTimeDelays Introduction: Inrecenttimes,infectiousdiseaseshavecausedsignificantdisruptionsworldwide,emphasizingtheimportanceofstudyingepidemicmodels.TheSEIR(Susceptible-Exposed-Infectious-Recovered)model,awidely-usedepidemiologicalmodel,allowsforabetterunderstandingofdiseasedynamicsandenablestheformulationofeffectivecontrolstrategies.AddingtimedelaystotheSEIRmodelcancapturemorerealisticscenarios,wheretheincubationperiodandtheperiodofinfectiousnessarenotinstantaneous.Inthispaper,wefocusonaspecificvariantoftheSEIRmodel,incorporatingdoubletimedelays,andperformaHopfbifurcationanalysistoinvestigatetheemergenceofsustainedoscillatorybehaviorinthesystem. SEIRModelwithDoubleTimeDelays: TheSEIRmodelwithdoubletimedelaysisgivenbythefollowingsetofdifferentialequations: dS/dt=λ-βS(t-τ₁)I(t-τ₂)-μS, dE/dt=βS(t-τ₁)I(t-τ₂)-(σ+μ)E, dI/dt=σE-(γ+μ)I, dR/dt=γI-μR, whereS,E,I,andRrepresentthepopulationsofsusceptible,exposed,infectious,andrecoveredindividuals,respectively.Theparametersλ,β,γ,σ,andμdenotethebirthrate,infectionrate,recoveryrate,incubationrate,anddeathrate,respectively.Thedoubletimedelaysτ₁andτ₂accountforthelagbetweenthetimeanindividualbecomesinfectedandthetimetheybecomeinfectious. StabilityAnalysis: ToinvestigatethestabilitypropertiesoftheSEIRmodelwithdoubletimedelays,wefirstcomputethebasicreproductionnumberR₀,whichrepresentstheaveragenumberofsecondaryinfectionscausedbyasingleinfectiousindividualintroducedintoacompletelysusceptiblepopulation.TheexpressionforR₀isderivedusingthenext-generationmatrixmethod,whichinvolveslinearizingthesystemequationsaroundthedisease-freeequilibrium.ThestabilityoftheequilibriumpointsisthendeterminedbasedonthesignofR₀:ifR₀<1,thedisease-freeequilibriumisgloballyasymptoticallystable,indicatingtheabsenceofanepidemic;ifR₀>1,thedisease-freeequilibriumisunstable,implyingthepossibilityofanepidemic. HopfBifurcationAnalysis: Beyondstabilityanalysis,theoccurrenceofHopfbifurcationr