预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种针对临近空间滑跃目标的轨迹跟踪方法 Title:TrajectoryTrackingMethodforNear-SpaceGlideVehicles Abstract: Near-spaceglidevehicleshavebecomeanareaofsignificantinterestduetotheirpotentialforlong-durationflightsandvariousapplications.Efficientlytrackingthetrajectoryofsuchvehiclesiscrucialforeffectivecontrolandmissionsuccess.Thispaperpresentsatrajectorytrackingmethodfornear-spaceglidevehicles,focusingonaddressingthechallengesposedbytheglidemotionandthedynamicsofthetarget. 1.Introduction Near-spaceglidevehicles,alsoknownashypersonicglidevehicles,aredesignedtotravelataltitudesbetweentheEarth'satmosphereandlowEarthorbit.Theyoffernumerousadvantages,includingextendedflighttime,globalcoverage,andrapidresponsecapabilities.However,trackingthetrajectoryofthesevehiclespresentsseveralchallengesduetohighspeeds,complexdynamics,andtheuncertaintyinthetarget'sbehavior. 2.BackgroundandRelatedWork Inrecentyears,significantresearcheffortshavebeenmadetodevelopeffectivetrajectorytrackingmethodsforvarioustypesofvehicles.Severalapproaches,suchasmodelpredictivecontrol,slidingmodecontrol,andproportional-integral-derivativecontrol,havebeenexploredfortrajectorytrackingindifferentapplications.However,thesemethodsmaynotbedirectlyapplicabletonear-spaceglidevehiclesduetotheiruniquecharacteristics. 3.SystemModeling Todevelopanaccuratetrajectorytrackingmethod,itisessentialtohaveacomprehensiveunderstandingofthedynamicsofthenear-spaceglidevehicles.Thissectionpresentsthesystemmodeling,whichincludesglidemotiondynamics,aerodynamicforces,andcontrolinputs.Themathematicalrepresentationsarederivedandvalidatedusingavailableflightdata. 4.TrajectoryPrediction Accuratetrajectorypredictionisthekeytoeffectivetracking.Thissectiondiscussesthetechniquesforpredictingthefuturetrajectoryofthetarget.Variousfactors,suchasatmosphericconditions,windeffects,andtargetintent,areconsideredtoenhancethepredictionaccuracy.Machinelearningalgorithms,suchassupportvectorregressionandneuralnetworks,canbeemployedtolearnthetarget'sbehaviorfromhistoricaldataan