预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于机载激光点云的电力线提取方法 Title:AMethodforPowerLineExtractionBasedonAirborneLiDARPointCloud Abstract: Asthedemandforenergycontinuestogrow,theaccurateidentificationandmappingofpowerlinesisbecomingincreasinglyimportantforensuringthereliablesupplyofelectricityandmaintainingeffectivemaintenanceandmanagement.ThispaperproposesamethodforpowerlineextractionbasedonairborneLiDARpointclouddata.LiDARtechnologyprovideshigh-precisionthree-dimensionalinformation,makingitanidealtoolforpowerlineextraction.TheproposedmethodutilizesseveralimageprocessingandmachinelearningtechniquestoautomaticallydetectandclassifypowerlinesfromLiDARdata. 1.Introduction TheefficientandaccurateextractionofpowerlinesfromLiDARpointclouddataiscriticalforvariousapplications,suchasinfrastructureplanning,3Dcitymodeling,andemergencyresponse.Traditionalpowerlineextractionmethodsrelyonmanualinterpretationofaerialphotographsorsatelliteimages,whichistime-consumingandlabor-intensive.Incontrast,LiDARtechnologycanprovidehighlydetailedandaccurate3Dinformationoftheenvironment,includingpowerlines,whichcansignificantlyimprovetheefficiencyandaccuracyofpowerlineextraction. 2.Methodology 2.1DataAcquisition AirborneLiDARdataisacquiredusingLiDARsensorsmountedonplanesorhelicopters.TheLiDARsystememitslaserpulsestowardsthegroundsurface,andthereflectedsignalsarerecordedtogenerateapointclouddataset.TheresultingpointcloudcontainstheX,Y,andZcoordinatesoftheobjects,aswellasadditionalattributessuchasintensityandreturnnumber. 2.2Preprocessing Beforeextractingpowerlines,theLiDARpointclouddataispreprocessedtoremovenoise,groundpoints,andvegetation.Thisstepinvolvesfilteringalgorithmssuchastheprogressivemorphologicalfilteringandprogressivetriangulatedirregularnetworkfiltering. 2.3Segmentation Thepreprocessedpointcloudisthensegmentedintoindividualpointgroupsbasedongeometricandradiometricproperties.Thisstepaimstoseparatepowerlinesfromotherobjectsinthescene.Itutilizesclusteringalgorithmssuchasregiongrowingorgraph-cuttoidentifyline-likestructurescorres