预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

非线性Fredholm-Volterra积分方程的Legendre谱配置法研究 Title:StudyingtheLegendreSpectralCollocationMethodforNonlinearFredholm-VolterraIntegralEquations Abstract: TheFredholm-Volterraintegralequationsplayafundamentalroleinvariousareasofscienceandengineering,astheydescribetherelationbetweenanunknownfunctionanditsintegraloveraspecificinterval.However,solvingsuchequationsanalyticallyisoftenchallenging,especiallywhentheequationsarenonlinear.Totacklethischallenge,variousnumericalmethodshavebeendeveloped.Inthispaper,wefocusontheapplicationoftheLegendrespectralcollocationmethodforsolvingnonlinearFredholm-Volterraintegralequations.Wediscussthetheoreticalbackgroundofthemethod,itsimplementationsteps,andpresentnumericalexperimentstodemonstrateitsefficiencyandaccuracy. 1.Introduction: Fredholm-Volterraintegralequationsareessentialinnumerousphysicalphenomena,suchasfractionalcalculus,electricalcircuits,andfluidmechanics.Theseequationsprovideapowerfultoolforstudyingintegraloperators'uniquepropertiesandtheirsolutions.However,whendealingwithnonlinearintegralequations,traditionalanalyticalmethodsbecomeinadequate.Therefore,thedevelopmentofefficientnumericalmethodsisnecessary. 2.TheLegendreSpectralCollocationMethod: TheLegendrespectralcollocationmethodisanaccurateandefficientnumericaltechniqueforsolvingintegralequations.ItutilizestheLegendre-Gauss-Lobatto(LGL)pointsascollocationpoints.TheLGLpointsarechosentoensuretheaccuracyofthemethodbysolvingtheintegralequationsatspecificnodes.Byapproximatingtheunknownfunctionusingatruncatedseriesexpansion,asystemofalgebraicequationsisobtained,whichcanbesolvedusingalinearornonlinearsolver.Thismethodensureshighaccuracyandfastconvergence. 3.ImplementationSteps: TheimplementationoftheLegendrespectralcollocationmethodfornonlinearFredholm-Volterraintegralequationsinvolvesthefollowingsteps: a.Transformingthenonlinearintegralequationintoalinearformusingsuitabletransformationtechniques. b.Selectingappropriatebasisfunctionsforconstructingthetruncatedseriesexpansion. c.Choosi