预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

结合分层和ADMM的高光谱图像解混方法 Title:AHybridHyperspectralImageUnmixingMethodusingLayeredandADMMApproaches Abstract: Hyperspectralimageunmixingisafundamentaltaskinremotesensing,aimingtoestimatetheconstituentsandtheirabundancesinmixedpixelspectra.Thispaperpresentsanovelapproachthatcombinesthelayeredandalternatingdirectionmethodofmultipliers(ADMM)techniquestoimprovetheaccuracyandefficiencyofhyperspectralimageunmixing.Theproposedmethodleveragestheadvantagesofbothapproaches,enablingenhancedunmixingresultsandfasterconvergence. 1.Introduction Hyperspectralimagingsystemscapturedataacrossawiderangeofwavelengths,providingdetailedinformationabouttheEarth'ssurface.However,theacquiredimageryoftenrepresentsmixturesofdifferentmaterialswithineachpixel,makingitcrucialtounmixthespectraandestimatethepurecomponents'abundances.Traditionalunmixingalgorithms,suchaslinearspectralunmixing(LSU),relyonlinearmodelsandoftenassumepixelwiseadditivityandGaussiannoise.Unfortunately,theseassumptionsmaynotholdinpractice,limitingtheaccuracyoftheunmixingresults. 2.LayeredHyperspectralImageUnmixing Layeredunmixinghasemergedasapowerfultechniqueforhandlingspectrallyvaryingmaterialsandnon-linearmixtures.Thisapproachdecomposesthemixedpixelspectraintomultiplelayers,eachrepresentingadistinctpurematerial.Thenumberoflayersisusuallyunknownandneedstobeestimated.Inthismethod,ahierarchicallystructuredBayesianmodelisemployed,whichincorporatespriorknowledgeaboutthematerialsignaturesandtheirspectralvariationsacrossdifferentregionsoftheimage.Thisallowsforadaptiveandspatiallyvaryingdecompositionofmixedpixelsintopurecomponents. 3.ADMMinHyperspectralImageUnmixing Thealternatingdirectionmethodofmultipliersisapopularoptimizationtechniquethatcansolveproblemswithseparableobjectivefunctions.ADMMhasbeensuccessfullyappliedtohyperspectralimageunmixingasitcanhandlenon-negativityconstraintsandsparsity-promotingpenaltyterms.ADMMdividestheunmixingproblemintosmallersubproblems,whichcanbesolvedefficientlyusingiterativeupdates.TheADMMalgorithmalte