预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进Smith预估时延补偿的模糊网络控制系统研究 Title:ImprovementofFuzzyNeuralNetworkControlSystemforSmithPredictiveDelayCompensation Abstract: Inprocesscontrolsystems,delaycompensationplaysacrucialroleinachievingaccurateandreliablecontrol.TheSmithpredictorisawell-knownapproachformitigatingtheeffectsoftimedelays.However,thetraditionalSmithpredictorsuffersfromseverallimitationssuchasthedifficultyinaccuratelymodelingthetimedelaysanduncertaintiesinherentinthesystem.Toaddressthesechallenges,thispaperproposesanimprovedfuzzyneuralnetworkcontrolsystemforSmithpredictivedelaycompensation.TheproposedsystemincorporatesfuzzylogicandneuralnetworktechniquestoenhancethepredictionaccuracyandadaptabilityoftheSmithpredictor.Theexperimentalresultsdemonstratetheeffectivenessoftheproposedapproachincompensatingfortimedelaysandimprovingcontrolperformance. 1.Introduction 1.1Background 1.2ResearchObjective 1.3SignificanceoftheStudy 2.LiteratureReview 2.1SmithPredictor 2.2FuzzyLogicControl 2.3NeuralNetworksinControlSystems 2.4PreviousResearchonFuzzyNeuralNetworkControl 3.Methodology 3.1OverallSystemArchitecture 3.2FuzzyLogic-basedPredictiveController 3.3NeuralNetwork-basedTimeDelayEstimation 3.4IntegrationofFuzzyLogicandNeuralNetworks 4.ProposedFuzzyNeuralNetworkControlSystem 4.1FuzzyRuleBaseDesign 4.2TrainingofNeuralNetwork 4.3FuzzyLogicandNeuralNetworkIntegration 4.4SystemIdentificationandParameterTuning 5.SimulationSetup 5.1ExperimentalSetup 5.2ModelImplementation 5.3PerformanceMetrics 6.ResultsandDiscussion 6.1ComparisonofTraditionalSmithPredictorandProposedSystem 6.2EffectivenessofFuzzyLogicandNeuralNetworkIntegration 6.3ImpactofParameterTuningonControlPerformance 7.Conclusion 7.1SummaryofFindings 7.2ContributionsoftheStudy 7.3FutureResearchDirections 8.References Note:Theaboveoutlineisasuggestionandcanbemodifiedaccordingtoyourspecificrequirementsandthecontentoftheresearch.Additionally,pleasenotethatthewordcountofthepaperwilldependonthedepthofanalysis,thenumberofexperimentalresults,andtheinclusionofadditional