预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于MRF的森林冠层半球图像分割方法研究 Title:AStudyontheSegmentationMethodofForestCanopyHemisphericalImagesbasedonMRF Abstract: Forestcanopyanalysisplaysacrucialroleinvariousecologicalapplications,suchasforestmanagementandbiodiversityassessment.Canopysegmentationisafundamentaltaskintreecrowndetectionandmonitoring.Inthispaper,weproposeanovelmethodtosegmentforestcanopyhemisphericalimagesbasedonMarkovRandomFields(MRF).Theobjectiveofourstudyistodevelopanaccurateandefficientsegmentationapproachthatcancontributetotheunderstandingandanalysisofforestecosystems. Introduction: Forestcanopyanalysisprovidesessentialinsightsintoforeststructure,speciescomposition,andcarbonsequestrationpotential.Hemisphericalimages,capturedfromupward-facinghemisphericallenses,offeracomprehensiveviewoftheforestcanopy.However,theaccuratesegmentationoftheseimagesischallengingduetothecomplexnatureofforestcanopies,includingoverlappingleaves,branches,andvaryingilluminationconditions.Thedevelopmentofanefficientandaccuratesegmentationmethodcanaidinforestmanagement,biodiversityanalysis,andecologicalresearch. Methodology: Ourproposedmethodcombinestextureanalysis,imageenhancement,andMRFmodelingtosegmentforestcanopyhemisphericalimages.Thefollowingstepsareinvolved: 1.Preprocessing:Initially,weapplyimageenhancementtechniquestoimprovethecontrastanddetailsoftheinputimage.Thispreprocessinghelpsinhighlightingtheprominentfeaturesofthecanopy. 2.TextureAnalysis:Weextracttexturefeatures,suchasGaborfilters,tocapturethespatialvariationsintheimage.Thesefeaturesallowustodifferentiatebetweendifferentcomponentsofthecanopy,suchasleaves,branches,andgaps. 3.ModelingviaMRF:Toperformthesegmentation,weformulatetheproblemasanMRFoptimizationtask.MRFmodelsprovideaprobabilisticframeworkthatleveragesthecontextualinformationofpixelstodeterminetheirlabels(canopyornon-canopy).Wedefinetheinteractionsbetweenneighboringpixelsusingapairwisepotentialfunction,consideringboththefeaturesimilarityandspatialproximity.WesolvetheMRFoptimizationproblemusingefficientinf