预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进型CNN的多聚焦图像融合方法 Title:Multi-FocusImageFusionMethodbasedonEnhancedConvolutionalNeuralNetworks Abstract: Imagefusionisacrucialtechniqueincomputervisionandimageprocessingthatcombinesmultipleimagestoobtainasinglecompositeimagewithhigherqualityandricherinformation.Thispaperproposesanovelmulti-focusimagefusionmethodbasedonanenhancedConvolutionalNeuralNetwork(CNN).Theproposedmethodemploysamulti-scalestrategytoextractfeaturesatdifferentlevelsandexploitsattentionmechanismstofocusonthemostsalientregions.Experimentalresultsdemonstratethattheproposedmethodoutperformsexistingimagefusionmethodsintermsofvisualqualityandobjectiveevaluationmetrics. 1.Introduction Imagefusionaimstointegratecomplementaryinformationfrommultipleimagestoproduceafusedimagethatprovidesamorecompleteandaccuraterepresentationofthescene.Variousapplicationssuchassurveillancesystems,roboticsystems,andmedicalimagingrequirehigh-qualityimagefusiontechniques.Amongdifferenttypesofimagefusion,multi-focusimagefusionisparticularlychallengingasitinvolvesfusingimageswithdifferentfocusestoobtainasharpandclearcompositeimage. 2.RelatedWork Thissectionbrieflyreviewsexistingmulti-focusimagefusionmethods,includingtraditionalmethodsbasedonhandcraftedfeaturesanddeeplearning-basedmethods.Whiletraditionalmethodsoftenrelyonspecificassumptionsandheuristics,deeplearning-basedmethodshaveshownpromisingperformancebylearningfeaturerepresentationsautomaticallythroughConvolutionalNeuralNetworks(CNNs). 3.ProposedMethod Theproposedmulti-focusimagefusionmethodconsistsoftwomainsteps:featureextractionandfusion.Inthefeatureextractionstep,anenhancedCNNisemployedtoextractfeaturesatdifferentscales,capturingbothlocalandglobalinformationoftheinputimages.TheenhancedCNNisdesignedwithmultipleconvolutionallayersandresidualconnections,enablingittolearnrichanddiscriminativefeatures.Thefusionsteputilizesattentionmechanismstofocusonregionswithhighsaliency,emphasizingimportantfeaturesinthefinalfusedimage. 4.ExperimentalResults Toevaluatetheperformanceofthep