基于高斯混合模型的滚动轴承故障诊断.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于高斯混合模型的滚动轴承故障诊断.docx
基于高斯混合模型的滚动轴承故障诊断概述滚动轴承是重要的机械元件之一,它们承受着旋转机械设备的载荷。盲目更换轴承会增加设备的维护费用,而且对设备的可靠性和安全性也会造成威胁。因此,开发一种可靠的滚动轴承故障诊断方法很有必要。高斯混合模型(GMM)是一种强大的统计学学习模型,可以有效地处理高维度数据。本文提出了一种基于GMM的滚动轴承故障诊断方法,以检测和识别滚动轴承的不同故障类型,提高维修效率和可靠性。背景知识在现代工业制造过程中,由于振动、过载和外部环境变化等各种原因,滚动轴承可能会产生多种故障。常见的故
基于多域特征与高斯混合模型的滚动轴承性能退化评估.docx
基于多域特征与高斯混合模型的滚动轴承性能退化评估滚动轴承是机械设备中最常见的部件之一,其性能对设备的稳定运行至关重要。然而,由于长时间的运行和恶劣的工作条件,滚动轴承很容易遭受磨损和损坏,从而导致性能退化甚至失效。因此,对滚动轴承性能的评估和监测非常重要,可以帮助预测和避免潜在的故障,提高设备的可靠性和安全性。针对上述问题,本文提出了一种基于多域特征与高斯混合模型的滚动轴承性能退化评估方法。该方法结合了机械领域的专业知识和数据挖掘技术,能够从多个角度全面评估轴承的性能状态,并提供高精度的预测模型。首先,本
基于高斯混合模型和变量重构组合法的故障诊断与分离.docx
基于高斯混合模型和变量重构组合法的故障诊断与分离基于高斯混合模型和变量重构组合法的故障诊断与分离摘要:提出了一种将变量重构与高斯混合模型结合的故障诊断与分离的方法。首先建立过程数据的高斯混合模型,解决了监控过程的测量数据不服从单峰的高斯分布所带来的问题,然后进行故障数据变量重构,估计未知参数并采用最大期望算法来估测均值与协方差矩阵。在此基础上建立统计模型进行故障的诊断与分离。与传统的贡献图分离故障的方法比较,通过田纳西一伊斯曼化工过程进行实验验证,本文提出的高斯混合模型与变量重构相结合对多状态过程进行故障
基于高斯混合模型和变量重构组合法的故障诊断与分离.docx
基于高斯混合模型和变量重构组合法的故障诊断与分离摘要:提出了一种将变量重构与高斯混合模型结合的故障诊断与分离的方法。首先建立过程数据的高斯混合模型,解决了监控过程的测量数据不服从单峰的高斯分布所带来的问题,然后进行故障数据变量重构,估计未知参数并采用最大期望算法来估测均值与协方差矩阵。在此基础上建立统计模型进行故障的诊断与分离。与传统的贡献图分离故障的方法比较,通过田纳西一伊斯曼化工过程进行实验验证,本文提出的高斯混合模型与变量重构相结合对多状态过程进行故障的诊断与分离收到较好效果。关键词:控制工程;故障
基于高斯混合模型和变量重构组合法的故障诊断与分离.docx
基于高斯混合模型和变量重构组合法的故障诊断与分离摘要:提出了一种将变量重构与高斯混合模型结合的故障诊断与分离的方法。首先建立过程数据的高斯混合模型,解决了监控过程的测量数据不服从单峰的高斯分布所带来的问题,然后进行故障数据变量重构,估计未知参数并采用最大期望算法来估测均值与协方差矩阵。在此基础上建立统计模型进行故障的诊断与分离。与传统的贡献图分离故障的方法比较,通过田纳西一伊斯曼化工过程进行实验验证,本文提出的高斯混合模型与变量重构相结合对多状态过程进行故障的诊断与分离收到较好效果。关键词:控制工程;故障