预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于生成对抗网络与ICNet的羊骨架图像实时语义分割 Title:Real-TimeSemanticSegmentationofSheepSkeletonImagesBasedonGenerativeAdversarialNetworksandICNet Abstract: Semanticsegmentationplaysacrucialroleinvariouscomputervisionapplications,includingobjectdetection,sceneunderstanding,androbotics.Inthispaper,weproposeanovelapproachforreal-timesemanticsegmentationofsheepskeletonimagesusingacombinationofGenerativeAdversarialNetworks(GANs)andICNet.Theproposedframeworknotonlyaccuratelypredictsthesemanticlabelsbutalsoachievesreal-timeperformance.Experimentalresultsonasheepskeletondatasetdemonstratetheeffectivenessandefficiencyofourapproach. 1.Introduction Thetaskofsemanticsegmentationinvolvesassigningspecificlabelstoeachpixelinanimage.Accuratesegmentationofsheepskeletonimagesisessentialforanimalbehavioranalysisandidentificationofskeletalanomalies.However,existingapproachesoftensufferfromlimitationsintermsofaccuracyorreal-timeperformance.Toovercometheselimitations,weproposeanovelapproachthatcombinesthepowerofGANsandICNet. 2.RelatedWork Previousstudieshaveextensivelyexploreddifferenttechniquesforsemanticsegmentation.Manydeeplearning-basedapproaches,suchasFullyConvolutionalNetworks(FCN)andU-Net,haveshownimpressiveresults.Additionally,GANshavebeensuccessfullyemployedforimagegenerationanddomainadaptationtasks.ICNet,amulti-scalearchitecture,hasbeenwidelyusedforreal-timesegmentation.However,nopriorworkhasspecificallyaddressedthereal-timesemanticsegmentationofsheepskeletonimages. 3.ProposedMethod Ourapproachinvolvesatwo-stepprocess:skeletongenerationusingGANsandsemanticsegmentationusingICNet. 3.1SkeletonGenerationusingGANs WeleveragethecapabilityofGANstogeneraterealisticsheepskeletonimages.Thegeneratornetworkistrainedtoproduceskeletonimagesfromrandomnoisevectors,whilethediscriminatornetworklearnstodifferentiatebetweenrealandgeneratedskeletonimages.BytrainingtheGANs,weensurethatthegeneratedskeletonimagescloselyresembletherealskeletonimages. 3.2SemanticSegmentationusingICNet ICNetisamulti-scalearchitecturethath