预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于随机矩阵理论的子空间加权改良算法(英文) Introduction Randommatrixtheoryhasemergedasanimportanttoolinmanyareasofengineering,mathematics,andphysics.Oneoftheapplicationsofrandommatrixtheoryisinthefieldofsignalprocessing,whereithasbeenusedtodevelopefficientalgorithmsforvarioussignalprocessingtasks.Inthispaper,wewilldiscusstheSubspaceWeightedImprovementAlgorithm(SWIA),whichisbasedonrandommatrixtheory.SWIAisapowerfultechniqueforimprovingtheperformanceofsubspace-basedsignalprocessingalgorithms. Motivation Subspace-basedmethodsarewidelyusedinsignalprocessingtasks,includingsourcelocalization,denoising,andsignalseparation.Thesealgorithmstypicallyrequireanestimateofthesubspaceofthesignalofinterest.However,thisestimateisofteninaccurateduetonoiseandotherperturbations.Asaresult,theperformanceofthesealgorithmscanbeseverelydegraded. Toaddressthisproblem,theSWIAalgorithmwasdeveloped.Thisalgorithmusestheconceptofrandommatricestoimprovetheaccuracyofthesubspaceestimate.Themotivationforthisapproachisthatrandommatriceshaveparticularpropertiesthatmakethemusefulforsignalprocessingapplications.Inparticular,theycanbeusedtogeneratearandomsubspacethatislikelytobeclosetothetruesubspaceofthesignalofinterest. Algorithm TheSWIAalgorithmconsistsofthefollowingsteps: 1.GeneratearandommatrixAofappropriatedimensions. 2.Computethesingularvaluedecomposition(SVD)ofthematrixA.LetU,Σ,andVbetheleftsingularvectors,singularvalues,andrightsingularvectorsofA,respectively. 3.LetWbeadiagonalmatrixwithentriesgivenbythereciprocalofthesingularvaluesinΣ. 4.ComputetheimprovedsubspaceestimateasUΣWV^T. TheSWIAalgorithmcanbeappliedtoanysubspace-basedsignalprocessingalgorithmthatrequiresasubspaceestimate.ByreplacingtheoriginalestimatewiththeimprovedestimategeneratedbySWIA,theperformanceofthealgorithmcanbesignificantlyimproved. Results TheeffectivenessoftheSWIAalgorithmwastestedusingtheMUSICalgorithm,awidelyusedsubspace-basedmethodforsourcelocalization.Thealgorithmwastestedonbothsimulatedandrealdata.Inbothcases,SWIAwasshowntoimprovetheaccur