预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进混沌搜索的AMPSO-BP短期负荷预测 Title:ImprovedChaoticSearchBasedAMPSO-BPShort-termLoadForecasting Abstract: Short-termloadforecastingplaysacrucialroleintheeffectiveoperationofpowersystems.Accuratepredictionsoffutureelectricitydemandhelpensuregridstabilityandoptimizeenergyresourceallocation.Thispaperpresentsanimprovedapproachforshort-termloadforecastingbasedonanenhancedhybridalgorithmcalledAMPSO-BP,whichcombinesAntColonyOptimization(ACO),ModifiedParticleSwarmOptimization(MPSO),andBackpropagation(BP)neuralnetworks.Toimprovethesearchabilityofthealgorithm,achaoticsearchstrategyisintroduced.Theproposedmethodoutperformsotherexistingtechniquesbyachievinghigheraccuracyandimprovedconvergenceforshort-termloadforecasting. 1.Introduction Theaccurateforecastingofshort-termloadisessentialinelectricitydemandmanagementforpowersystemplanning,operation,anddecision-making.Short-termloadforecastinghelpstooptimizeenergyresourceallocation,reducescosts,andensuresgridstability.Inrecentyears,severalforecastingmethods,includingneuralnetworks,statisticalmodels,andoptimizationalgorithms,havebeenusedforloadforecasting.However,thesemethodshavelimitationsintermsofaccuracy,robustness,andconvergence. 2.AMPSO-BPHybridAlgorithm TheproposedforecastingapproachcombinesAntColonyOptimization,ModifiedParticleSwarmOptimization,andBackpropagationneuralnetworks(AMPSO-BP).ACOoptimizestheinitialweightsandbiasesoftheneuralnetwork,MPSOoptimizestheparametersoftheneuralnetworkfortraining,andBPisusedtofine-tunethenetwork.Thishybridalgorithmtakesadvantageofthestrengthsofeachcomponenttoenhancetheoverallperformanceofloadforecasting. 3.ChaoticSearchStrategy ToimprovethesearchabilityoftheAMPSO-BPalgorithm,achaoticsearchstrategyisintroduced.Chaoticsystemsexhibitcomplexandirregularbehaviorsthatcanenhancetheexplorationabilityofoptimizationalgorithms.ByincorporatingchaoticsearchintotheAMPSO-BPalgorithm,theglobalsearchcapabilityisimproved,leadingtomoreaccurateloadforecasts. 4.ExperimentalSetup Theproposedmethodisevaluatedusingareal-w