预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于FRFT的多分量LFM信号检测与参数估计方法 Title:DetectionandParameterEstimationofMulti-componentLFMSignalsBasedonFractionalFourierTransform(FRFT) Abstract: Thedetectionandparameterestimationofmulti-componentlinearfrequencymodulated(LFM)signalsareimportanttasksinmanyapplicationssuchasradar,sonar,andcommunications.ThispaperproposesanovelmethodbasedontheFractionalFourierTransform(FRFT)forthedetectionandparameterestimationofmulti-componentLFMsignals.TheFRFTprovidesaversatiletoolforanalyzingsignalswithvaryingfrequencycontentandhasbeenwidelyusedinsignalprocessingapplications.TheproposedmethodexploitsthepropertiesofFRFTtoaccuratelydetectandestimatetheparametersofLFMsignalswithinamulti-componentsignalmixture. 1.Introduction LFMsignalsarewidelyusedinmoderncommunicationsystemsduetotheirwidebandwidthandgoodresolutioncharacteristics.Inreal-worldscenarios,detectingandestimatingtheparametersofmulti-componentLFMsignalsischallengingduetointerferencecausedbynoiseandothersignals. 2.Background 2.1LinearFrequencyModulation(LFM)Signals 2.2FractionalFourierTransform(FRFT) 2.3ChallengesinDetectionandParameterEstimationofMulti-componentLFMSignals 3.ProposedDetectionandParameterEstimationMethod 3.1SignalModel 3.2FRFT-basedApproach 3.3DetectionAlgorithm 3.4ParameterEstimationAlgorithm 4.SimulationResults 4.1PerformanceEvaluationMetrics 4.2ComparativeAnalysiswithExistingMethods 4.3RobustnesstoNoiseandInterference 5.Discussion 5.1AdvantagesandLimitationsoftheProposedMethod 5.2PotentialApplications 5.3FutureResearchDirections 6.Conclusion Inthispaper,anoveldetectionandparameterestimationmethodbasedonFRFTformulti-componentLFMsignalswasproposed.ThemethodexploitstheuniquepropertiesofFRFTtoaccuratelydetectandestimatetheparametersofLFMsignalswithinamulti-componentsignalmixture.Thesimulationresultsdemonstratetheeffectivenessandrobustnessoftheproposedmethod.Theproposedmethodhaspotentialapplicationsinvariousareassuchasradar,sonar,andcommunications.Futureresearchdirectionsmayincludeimprovingthecomputationalefficiencyoft