预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于先验估计的传播中心溯源算法 Title:PropagationCenterTracingAlgorithmbasedonPriorEstimation Abstract: Inrecentyears,therapidtransmissionofinformationandtheproliferationofonlinesocialnetworkshavemadeitincreasinglyimportanttotracetheoriginofinformationandtrackdownthesourcesofspreadingevents.Inthispaper,weproposeapropagationcentertracingalgorithmbasedonpriorestimation.Thisalgorithmaimstoaccuratelyidentifytheinitialsourceofinformationinacascadeandeffectivelytrackthepathwaysofinformationspreading.Thealgorithmcombinespriorestimationmethodswithnetworkanalysistechniques,providingasystematicapproachforsourcetracinginlarge-scalecascades. 1.Introduction: Withthewidespreaduseofsocialmediaplatforms,informationspreadsrapidly,causingsignificantimpactandinfluenceonpublicopinion.Itiscrucialtounderstandhowinformationpropagatesinordertomitigatethedisseminationoffalseinformationorharmfulcontent.Traditionaltracingmethods,suchasbacktrackingandtime-stampanalysis,oftensufferfromlimitationsintermsofaccuracy,scalability,andresourceusage.Therefore,anefficientandreliablealgorithmisneededforsourcetracinginlarge-scalecascades. 2.PriorEstimation: Priorestimationreferstotheestimationofthelikelysourcesofinformationpropagationbasedonavailableevidenceandknowledge.Itinvolvesanalyzingvariousfactors,suchasuserinfluence,networktopology,andcontentcharacteristics.Byincorporatingpriorestimationmethodsintothetracingalgorithm,wecannarrowdownthesearchspaceandfocusonpotentialsources,therebyimprovingefficiencyandaccuracy. 3.TracingAlgorithm: Theproposedalgorithmconsistsofseveralkeysteps.Firstly,itconstructsthecascadenetworkbymodelingtheinformationpropagationprocessasadirectedgraph.Eachnodeinthegraphrepresentsauser,andtheedgesrepresenttheflowofinformationfromoneusertoanother.Then,itappliespriorestimationtechniquestoranktheusersbasedontheirlikelihoodofbeingthesourceofthecascade.Thisrankingcanbeachievedthroughvariousmethods,includingcentralityanalysis,machinelearningmodels,oracombinationofboth.Thealgorithmtheniterativelyprunesth