预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种在Spark框架下的基于改进随机森林的Android恶意软件检测方法 Title:AnImprovedRandomForest-BasedAndroidMalwareDetectionMethodintheSparkFramework Abstract: TheriseinthenumberofAndroidmalwareposesasignificantthreattouserprivacyandsecurity.Traditionalmalwaredetectionmethodsoftenstruggletokeepupwiththeincreasingsophisticationofmalware.Inthispaper,weproposeanimprovedrandomforest-basedAndroidmalwaredetectionmethodintheSparkframework.ByleveragingthedistributedcomputingcapabilitiesofSpark,ourapproachaimstoenhancethespeedandaccuracyofmalwaredetectionontheAndroidplatform. 1.Introduction: WiththerapidgrowthoftheAndroidplatform,thenumberofmalwarespecificallytargetingAndroiddeviceshasalsoincreaseddramatically.MalwarecreatorstakeadvantageoftheopennessoftheAndroidecosystemtoexploitvulnerabilitiesformaliciouspurposes.TraditionalAndroidmalwaredetectionmethods,suchassignature-baseddetectionandpermissionanalysis,havelimitationsinaccuratelyidentifyingnewandunknownmalware.Therefore,thereisaneedformoresophisticatedtechniquestodetectandmitigatetheimpactofAndroidmalware. 2.Background: 2.1AndroidMalware:ThissectionprovidesanoverviewofAndroidmalware,itstypes,andtheconsequencesofmalwareinfectionsonuserprivacyandsecurity. 2.2RandomForest:Weexplaintheconceptofrandomforests,whichareensemblelearningalgorithmswidelyusedforclassificationtasks.Randomforestshaveshownpromisingresultsinvariousdomainsduetotheirabilitytohandlelargedatasetsandhandlethecurseofdimensionality. 3.ProposedMethodology: 3.1DatasetPreparation:WedescribetheprocessofcollectingandpreparingalabeleddatasetofbenignandmaliciousAndroidapplications.Thedatasetisutilizedfortrainingandevaluatingtherandomforest-basedclassificationmodel. 3.2FeatureExtraction:WeidentifyasetofeffectivefeaturesfromtheAndroidapplicationdataset.Thesefeaturescaptureimportantcharacteristicsofmalware,includingpermissions,APIcalls,intentfilters,andmore. 3.3FeatureSelection:Toreducethedimensionalityofthefeaturespaceandimprovetheclassificationaccuracy,weemployfeatureselectiontechniquessuchasinfo