预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

改进粒子群算法优化SVR水质预测模型研究 Abstract Inrecentyears,supportvectorregression(SVR)hasgainedwidepopularityinwaterqualityprediction,owingtoitspowerfullearningabilityandhighpredictionaccuracy.However,theconventionalSVRmodeloftengetstrappedinlocaloptimizationandfailstofindouttheglobalextreme,therebyunderminingthepredictionperformance.Toovercomethislimitation,thispaperproposesanimprovedparticleswarmoptimization(PSO)algorithmforoptimizingSVRwaterqualitypredictionmodel.Theproposedalgorithmenhancestheselectionandupdatingstrategyofparticlestoexplorethewholesearchspaceandconvergetowardstheglobaloptimum.Theeffectivenessoftheproposedalgorithmwasdemonstratedbyconductingexperimentsonareal-worlddataset,andtheresultsshowedthatitoutperformedthestandardPSOandconventionalSVRmodelsregardingvariousevaluationmetrics,suchasmeanabsoluteerror(MAE),rootmeansquarederror(RMSE)andcoefficientofdetermination(R2). Introduction Waterqualitypredictionplaysanessentialroleinensuringthesafetyandsecurityofhumanhealthandtheenvironment.Withtheever-increasingdeteriorationofwaterquality,thereisanurgentneedforeffectivewaterqualitypredictionmodelsthatcanenabletimelyandaccuratedecisionsforwaterresourcemanagement.Variouspredictivemodelshavebeendevelopedforwaterqualityprediction,amongwhichsupportvectorregression(SVR)hasemergedasoneofthemosteffectiveandefficientmodelsduetoitsstronggeneralizationabilityandhighpredictionaccuracy.However,theperformanceoftheSVRmodelsignificantlydependsontheselectionofkernelfunctionandtuningofparametersthatneedtobeoptimized.Thisoptimizationofteninvolvesacomplexandchallengingsearchproblemthatrequiresapowerfuloptimizationalgorithmtoefficientlyandeffectivelyidentifytheoptimalvalues. Particleswarmoptimization(PSO)isawidelyadoptedoptimizationalgorithminvariousfieldsbecauseofitsfastconvergencerate,simplicity,andglobalsearchcapability.Overtheyears,severalresearchershavecombinedPSOwithSVRtoenhancethepredictionaccuracyofthemodel.However,theconventionalPSOhaslimitationsconcerninglocaloptimization,anditma