预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心 2007—2008学年第一学期期末高三五校联考 数学试题(理科) 本试卷分选择题和非选择题两部分,,满分为150分,考试时间120分钟。 注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上。 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。 第一部分选择题(共40分) 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.若集合,,则= A.B.C.D. 2.在复平面内,复数eq\f(1+i2009,(1-i)2)对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.已知,则的值等于 A.B.1C.2D.3 4.已知三条不重合的直线m、n、l,两个不重合的平面,有下列命题 ①若;②若; ③若;④若; 其中正确的命题个数是 A.1 B.2 C.3 D.4 5.已知数列、都是公差为1的等差数列,其首项分别为、,且,,,则数列前10项的和等于 A.55B.70C.85D.100 6.定义行列式运算=.将函数的图象向左平移()个单位,所得图象对应的函数为偶函数,则的最小值为 A. B. C. D. 7.定义在上的函数的图象关于点成中心对称,对任意的实数都有,且,则的值为 A. B. C.0 D.1 8.对任意正整数,定义的双阶乘如下: 当为偶数时, 当为奇数时,` 现有四个命题:①,②, ③个位数为0,④个位数为5 其中正确的个数为 A.1B.2C.3D.4 第二部分非选择题(共110分) 二、填空题:本大题共7小题,其中9~12题是必做题,13~15题是选做题.每小题5分,满分30分. 9.若抛物线的焦点与双曲线的右焦点重合,则的值为. 10.设=,则二项式展开式中含项的系数是 11.在Rt△ABC中,CA⊥CB,斜边AB上的高为h1, 则;类比此性质,如图,在四 面体P—ABC中,若PA,PB,PC两两垂直,底 面ABC上的高为h,则得到的正确结论为; 12.某医疗研究所为了检验某种血清预防感冒的作用,把名使用血清的人与另外名未用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用列联表计算得,经查对临界值表知. 对此,四名同学做出了以下的判断: p:有的把握认为“这种血清能起到预防感冒的作用” q:若某人未使用该血清,那么他在一年中有的可能性得感冒 r:这种血清预防感冒的有效率为 s:这种血清预防感冒的有效率为 则下列结论中,正确结论的序号是.(把你认为正确的命题序号都填上) (1)p∧﹁q;(2)﹁p∧q; (3)(﹁p∧﹁q)∧(r∨s);(4)(p∨﹁r)∧(﹁q∨s) ▲选做题:在下面三道小题中选做两题,三题都选的只计算前两题的得分. 13.(坐标系与参数方程选做题)已知圆的极坐标方程为,则该圆的圆心到直线的距离是. 14.(不等式选讲选做题)已知g(x)=|x-1|-|x-2|,则g(x)的值域为; B A P C 若关于的不等式的解集为空集,则实数的取值范围是. 15.(几何证明选讲选做题)如图:PA与圆O相切于A, PCB为圆O的割线,并且不过圆心O,已知∠BPA=, PA=,PC=1,则圆O的半径等于. 三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程. 16.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=,且 (1)求角C的大小;(2)求△ABC的面积. 17.(本小题满分12分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数: (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; (2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望. 18.(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图). (1)当x=2时,求证:BD⊥EG; (2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值; (3)当f(x)取得最大值时,求二面角D-BF-C的余弦值. 19.(本小题满分14分)椭圆C的中心为