预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用于深度学习的医学图像标注系统的设计与实现 Title:DesignandImplementationofaMedicalImageAnnotationSystemforDeepLearning Abstract: Medicalimageannotationisacriticaltaskinthefieldofhealthcare,asitprovidesvaluableinformationfordiagnosis,treatmentplanning,andresearchpurposes.Withtherecentadvancementsindeeplearning,therehasbeengrowinginterestindevelopingautomatedsystemsformedicalimageannotation.Thispaperpresentsthedesignandimplementationofamedicalimageannotationsystemspecificallytailoredfordeeplearningalgorithms.Thesystemaimstoimprovetheaccuracyandefficiencyofmedicalimageannotationwhileaddressingthechallengesandrequirementsuniquetothefieldofmedicine. 1.Introduction MedicalimageannotationplaysacrucialroleintheanalysisandinterpretationofmedicalimagessuchasX-rays,MRIs,andCTscans.Manualannotationisatime-consumingandintricateprocess,pronetohumanerrorandsubjectivity.Deeplearningtechniques,suchasconvolutionalneuralnetworks(CNNs),havedemonstratedpromisingresultsinautomatingtheprocessandimprovingtheoverallaccuracyofannotation.Thispaperpresentsacomprehensivedesignandimplementationofamedicalimageannotationsystemthatleveragesdeeplearningalgorithmstoenhancetheefficiencyandeffectivenessofmedicalimageanalysis. 2.SystemArchitecture Theproposedmedicalimageannotationsystemcomprisesseveralkeycomponents,includingdataacquisition,preprocessing,annotationmodeltraining,annotationvalidation,andoutputvisualization.Thesystemutilizesaclient-serverarchitecturetodistributecomputationaltaskseffectively.Ontheclient-side,auser-friendlyinterfaceallowsmedicalprofessionalstoaccess,annotate,andreviewimages.Ontheserver-side,deeplearningmodelsaretrainedusingannotateddataandusedforautomatedannotation. 3.DataAcquisitionandPreprocessing Thesystemintegrateswithexistingmedicalimagedatabasesandsupportsvariousimageformats.Theacquireddataissubjectedtopreprocessingmethodstonormalizetheimages,handlenoisereduction,andenhancecontrast.Preprocessingtechniquesspecifictomedicalimagesmayalsobeemployed,suchasresamplingandimageregistration,toaddress