预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

特征提取方法研究及其在人脸识别中的应用 Abstract Featureextractionplaysacrucialroleinvariouscomputervisionapplicationssuchasobjectrecognition,facedetection,andsecuritysystems.Inthefieldoffacerecognition,featureextractiontechniquesaimtoextractrepresentativefeaturesoffaceimages,convertthemintoacompactrepresentation,andusetheminmachinelearningalgorithmstoidentifyaperson'sfacefromadatabaseofimages.Thispaperdiscussesvariousfeatureextractiontechniquesusedforfacerecognitionandtheirapplicationsinreal-worldscenarios. Introduction Facerecognitionhasbeenanactiveareaofresearchinthefieldofcomputervisionandmachinelearning.Featureextractionmethodshavebeenwidelyusedtorepresentfaceimagesasasetofdiscriminativefeatures.Thegoaloffeatureextractionistoreducethedimensionalityoffaceimageswhileretainingtheimportantinformation,suchasfacialexpressions,poses,andidentities,thatcanbeusedtodistinguishonefacefromanother.Moreover,featureextractionisusedtoenhancerobustnesstovariationsinthefaceimages,suchasilluminationchanges,occlusion,andnoise. Inthispaper,weprovideanoverviewofvariousfeatureextractiontechniquesusedinfacerecognition.Wediscussthemostwidelyusedfeatureextractionmethods,includingPrincipalComponentAnalysis(PCA),LinearDiscriminantAnalysis(LDA),LocalBinaryPatterns(LBP),andConvolutionalNeuralNetworks(CNNs).Wealsoprovideanoverviewoftheapplicationsofthesemethodsinreal-worldscenarios,suchasfacialrecognitioninsecuritysystems,entertainmentindustries,andsocialnetworks. FeatureExtractionTechniques PrincipalComponentAnalysis(PCA) PCAisacommontechniqueusedforfeatureextractioninfacerecognition.Itisalineartransformationthatprojectsfaceimagesontotheirprincipalcomponents,whichareobtainedbydecomposingthecovariancematrixofthefaceimages.PCAhasbeenwidelyusedinvariousapplications,suchasdatacompressionanddimensionalityreduction. LinearDiscriminantAnalysis(LDA) LDAisanotherwidelyusedtechniqueforfeatureextractioninfacerecognition.UnlikePCA,LDAisasupervisedtechniquethataimstomaximizethediscriminationbetweendifferentclassesoffaceimag