预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

机载LiDAR点云缺失数据填补方法研究 Title:ResearchonMethodsforFillingMissingDatainAirborneLiDARPointClouds Abstract: AirborneLiDARpointcloudsarewidelyusedinvariousapplicationssuchasterrainmodeling,citymapping,andenvironmentalmonitoring.However,duetovariousreasonssuchasocclusions,sensorlimitations,anddatatransmissionerrors,LiDARpointcloudsoftencontainmissingdata.ThegoalofthisresearchistoexploreandanalyzedifferentmethodsforfillingmissingdatainairborneLiDARpointclouds. Keywords:airborneLiDAR,pointcloud,missingdata,datafilling 1.Introduction AirborneLiDARtechnologyhasbecomeapopulartoolforcapturinghigh-resolutionanddensepointclouddata.However,missingdatainLiDARpointcloudscansignificantlyimpactthequalityandaccuracyofderivedinformation.ThisresearchaimstoinvestigatevariousmethodsforfillingmissingdatainairborneLiDARpointclouds. 2.TypesofMissingDatainLiDARPointClouds ThereareseveraltypesofmissingdatainairborneLiDARpointclouds,includingocclusion,sensorlimitations,datatransmissionerrors,andvegetationocclusion.Eachtypepresentsuniquechallengesandrequiresspecificapproachesfordatafilling. 3.ExistingMethodsforDataFilling 3.1.InterpolationTechniques Interpolationtechniques,includingnearestneighbor,bilinear,andcubicinterpolation,havebeencommonlyusedforfillingmissingLiDARdata.Thesetechniquesestimatethemissingpointsbasedonthesurroundingobservedpoints.Thechoiceofinterpolationmethoddependsonfactorssuchasdatadensity,pointdistribution,andlocalterraincharacteristics. 3.2.Clustering-basedApproaches Clustering-basedapproachesaimtoidentifyclustersorgroupsofpointsinLiDARpointcloudsandfillthemissingdatabypropagatinginformationfromsurroundingpointswithinthesamecluster.ThisapproachutilizesthespatialandcontextualinformationoftheLiDARpointcloudtoinfermissingdata. 3.3.MachineLearningTechniques Machinelearningtechniques,suchasartificialneuralnetworksandrandomforests,havebeenexploredforfillingmissingdatainLiDARpointclouds.Thesetechniqueslearntherelationshipsbetweentheobserveddataandthemissingdata,andthenpredictthemissi