预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

树木遮挡下的机载Lidar点云建筑物轮廓提取 Title:ExtractionofBuildingOutlinesfromAirborneLiDARPointCloudsunderTreeCanopyCover Abstract: Theaccurateextractionofbuildingoutlinesisofgreatsignificanceinurbanplanning,3Dmodeling,andresourcemanagement.However,thepresenceoftreecanopycoverposesaconsiderablechallengetothistask.Inthispaper,weproposeamethodutilizingairborneLiDARpointcloudsforextractingbuildingoutlinesundertreecanopycover.Themethodcombinespointcloudsegmentation,digitalsurfacemodelgeneration,andedgedetectionalgorithmstoaccuratelydelineatethebuildingboundaries.Experimentalresultsdemonstratetheeffectivenessandreliabilityoftheproposedapproachinextractingaccuratebuildingoutlineseveninchallengingconditions. 1.Introduction: Accuratebuildingoutlinesareessentialfornumerousapplications,includingurbandevelopment,disastermanagement,andinfrastructureplanning.Traditionalmethods,suchasmanualdigitizationandphotogrammetry,havelimitationsinextractingbuildingoutlinesduetoocclusionscausedbytreecanopycover.Withthedevelopmentofremotesensingtechnology,airborneLiDARhasemergedasapromisingtoolforcapturinghigh-resolution3DinformationoftheEarth'ssurface,includingbuildings.ThispaperaimstopresentamethodforeffectivelyextractingbuildingoutlinesfromairborneLiDARpointcloudsundertreecanopycover. 2.Methodology: 2.1DataAcquisition: AirborneLiDARdata,whichincludesLiDARpointcloudsandcorrespondingintensityvalues,iscollectedusingalaserscannermountedonanaircraft.Thedatasetshouldhavesufficientpointdensity,pointcloudquality,andcoveragetoensureaccurateextraction. 2.2Preprocessing: Datapreprocessingstepsinvolvefilteringoutvegetationpoints,noiseremoval,andgroundfilteringtoobtaincleanandreliablepointclouds.TechniquessuchasNormalVectorAnalysis(NVA)andCanopyHeightModel(CHM)canbeemployedtoidentifyandremovevegetationpoints. 2.3PointCloudSegmentation: Toseparatepointsbelongingtobuildingsfromotherobjects,apointcloudsegmentationalgorithm,suchasregiongrowingorvoxel-basedclustering,isapplied.Thealgorithmgroupsadjacentpointswithsimilarcha