预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于超像素的高分辨率遥感影像功能区分类 Title:FunctionalityZoneClassificationofHigh-ResolutionRemoteSensingImagesBasedonSuperpixels Abstract: High-resolutionremotesensingimagesprovidedetailedandvaluableinformationaboutdifferentlandcovertypes.Accurateclassificationoftheseimagesintofunctionalityzonescanaidinvariousapplicationssuchasurbanplanning,agriculture,andenvironmentalmonitoring.Thispaperintroducesamethodbasedonsuperpixelstoachievehigh-resolutionremotesensingimageclassificationbysegmentingtheimageintocompactandperceptuallyhomogeneousregions.Theproposedapproachhasbeenevaluatedagainstapubliclyavailabledatasetandhasdemonstratedpromisingresultsintermsofaccuracyandefficiency. 1.Introduction: High-resolutionremotesensingimagescontainvastamountsofdata,makingmanualinterpretationandanalysistime-consumingandchallenging.Toovercomethis,automatedimageclassificationtechniqueshavebeenwidelyadopted.However,traditionalpixel-basedclassificationmethodsresultinlossofspatialcontextandoftenstruggletoaccuratelyclassifycomplexscenes.Superpixel-basedsegmentationprovidesasuitablesolutionbygroupingpixelsintocompactregions,preservingthespatialinformationandimprovingclassificationaccuracy.Thispaperpresentsanovelapproachusingsuperpixelsforfunctionalityzoneclassificationinhigh-resolutionremotesensingimages. 2.Methodology: 2.1Preprocessing: Theinitialstepinvolvespreprocessingtheremotesensingimagetoenhanceitsqualityandremovenoise.Commonpreprocessingtechniquessuchasradiometriccorrection,atmosphericcorrection,andnoisereductionareappliedtoimprovetheoverallimagequalityandfacilitatesubsequentanalysis. 2.2SuperpixelSegmentation: Superpixelsegmentationaimstopartitionanimageintocompactandperceptuallyhomogeneousregions.Inthispaper,theSLIC(SimpleLinearIterativeClustering)algorithmisemployedforsuperpixelsegmentationduetoitsefficiencyandeffectivenessinpreservingboundaries.Thenumberofsuperpixelscanbeadjustedbasedonthecomplexityoftheimageandthedesiredlevelofdetail. 2.3FeatureExtraction: Afterobtainingsuperpixels,asetoffeaturesis