预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于用户动态兴趣的微博个性化推荐的研究 基于用户动态兴趣的微博个性化推荐的研究 Abstract WiththewidespreadusageofsocialmediaplatformssuchasWeibo,personalizedrecommendationshavebecomeincreasinglyimportantforenhancinguserexperiences.Inthispaper,weproposearesearchframeworkforpersonalizedWeiborecommendationsbasedonusers'dynamicinterests.Theframeworkincorporatesuserbehaviormodeling,interestdiscovery,andrecommendationgeneration.WeconductexperimentsonalargedatasetcollectedfromWeiboandevaluatetheproposedframeworkusingvariousmetrics,includingprecision,recall,andF-score.Theresultsdemonstratethatourapproachsignificantlyoutperformstraditionalcollaborativefilteringandcontent-basedmethodsintermsofrecommendationaccuracy. 1.Introduction Weibo,asapopularsocialmediaplatform,attractsmillionsofactiveuserswhosharevarioustypesofinformationsuchastext,images,andvideos.Toproviderelevantandinterestingcontenttoeachuser,personalizedrecommendationshavebecomeacorefeatureofWeibo.However,traditionalrecommendationsystemsprimarilyfocusonusers'long-terminterests,whichmayfailtocaptureusers'dynamicpreferencesandinterestsinatimelymanner.Consequently,itisnecessarytodevelopapersonalizedrecommendationsystemthatcanadapttousers'changinginterests. 2.RelatedWork Previousresearchonpersonalizedrecommendationsinsocialmediaplatformshasmainlyfocusedoncollaborativefilteringandcontent-basedmethods.Collaborativefilteringapproachesexploituser-iteminteractiondatatodiscoverusers'preferences.However,thesemethodssufferfromthesparsityproblemandfailtocapturetemporaldynamics.Content-basedmethods,ontheotherhand,analyzethecontentofitemstogeneraterecommendations.However,theyoftensufferfromthecold-startproblemfornewlyregisteredusers.Toaddresstheselimitations,researchershaveexploredapproachesthatleverageusers'socialconnectionsandincorporatetemporaldynamics. 3.ResearchFramework OurproposedresearchframeworkforpersonalizedWeiborecommendationsbasedonusers'dynamicinterestsconsistsofthreemaincomponents:userbehaviormodeling,interestdiscovery,andrecommendationgeneration. 3.1Use