预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于支持向量机和遗传算法的基因表达谱数据分类 Title:ClassificationofGeneExpressionDataBasedonSupportVectorMachineandGeneticAlgorithm Abstract: Inrecentyears,theclassificationofgeneexpressiondatahasbecomeacrucialtaskinbioinformaticsandbiomedicalresearch.Withtheadvancementsinhigh-throughputtechnologies,suchasmicroarrayandRNA-Seq,theamountofgeneexpressiondatahasexponentiallyincreased,makingitchallengingtoaccuratelyclassifyandanalyzethedata.ThispaperproposesanovelapproachthatcombinesSupportVectorMachine(SVM)andGeneticAlgorithm(GA)forgeneexpressiondataclassification.TheSVMalgorithmisutilizedforitsabilitytohandlehigh-dimensionaldatasets,whiletheGAisappliedforfeatureselectionandhyperparameteroptimization.Ourproposedmethodaimstoimprovetheaccuracyandrobustnessofgeneexpressiondataclassification,thusassistingresearchersinidentifyingpotentialbiomarkersandunderstandinggenefunctions. 1.Introduction Geneexpressiondataclassificationplaysasignificantroleinmolecularbiologyandmedicine.Itallowsresearcherstoidentifydisease-relatedgenes,understandgenefunctions,anddevelopnewdiagnosticandtherapeuticstrategies.Traditionalclassificationmethods,suchask-nearestneighbors(KNN)andNaiveBayes,havelimitationsinhandlinghigh-dimensionalgeneexpressiondata.Hence,thispaperproposesanintegratedapproachofSVMandGAtoovercometheselimitationsandenhanceclassificationaccuracy. 2.SupportVectorMachine(SVM) 2.1SVMAlgorithm SVMisasupervisedmachinelearningalgorithmthataimstofindanoptimalhyperplanethatseparatesdifferentclassesinahigh-dimensionalfeaturespace.Throughaprocesscalledkerneltrick,SVMcanefficientlyhandlenon-linearlyseparabledatasets.Thealgorithmfindsthehyperplanewiththelargestmargin,maximizingtheseparationbetweenclasses. 2.2SVMforGeneExpressionDataClassification SVMhasbeenwidelyusedingeneexpressiondataclassificationduetoitsabilitytohandlehigh-dimensionaldatasets.Itcanefficientlyfindthedecisionboundarythatbestseparatesthesamplesintotheirrespectiveclasses.TheSVMalgorithmnotonlyprovideshighaccuracybutalsoexhibitsgoodgeneralizationabili