预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进烟花算法的SVM特征选择和参数优化的研究 Title:ResearchonSVMFeatureSelectionandParameterOptimizationbasedonImprovedFireworksAlgorithm Abstract: SupportVectorMachine(SVM)featureselectionandparameteroptimizationaretwocrucialstepsinsolvingcomplexclassificationproblems.ThispaperproposesanovelapproachthatcombinestheImprovedFireworksAlgorithm(IFA)withSVMtoenhancefeatureselectionandoptimizeparameterssimultaneously.TheIFAisutilizedtoexplorethefeaturespaceandsearchfortheoptimalsubsetoffeatures,whilealsooptimizingtheSVMparameters.AcomparativeanalysisisperformedwithtraditionalSVM,demonstratingtheeffectivenessandefficiencyoftheproposedapproach.Experimentalresultsonseveralbenchmarkdatasetsvalidatethesuperiorityoftheproposedapproach,achievingimprovedclassificationaccuracyandreducedcomputationalcost. Keywords:SupportVectorMachines,FeatureSelection,ParameterOptimization,ImprovedFireworksAlgorithm,ClassificationAccuracy 1.Introduction Inmanyreal-worldapplications,suchasimagerecognition,bioinformatics,andtextmining,featureselectionplaysavitalroleinconstructingeffectiveclassificationmodels.Theselectionofrelevantfeaturesnotonlyimprovestheperformanceofclassificationalgorithmsbutalsoreducescomputationalcomplexity.Moreover,choosingsuitableparametersforSVMissignificantforachievingaccurateclassificationresults.However,thechallengeliesinfindingtheoptimalsubsetoffeaturesandadjustingtheSVMparametersconcurrently. 2.RelatedWork 2.1SupportVectorMachines SupportVectorMachines(SVM)isapopularmachinelearningalgorithmforbinaryclassification.SVMaimstofindanoptimalhyperplanethatseparatestheinputinstancesintodifferentclasses.TheeffectivenessofSVMsignificantlydependsontheselectionofrelevantfeaturesandappropriateparametervalues. 2.2FeatureSelectionMethods Severalfeatureselectionmethodshavebeenextensivelystudied,includingfiltermethods,wrappermethods,andembeddedmethods.Thesemethodsevaluatetherelevanceandimportanceoffeaturesbasedonvariouscriteria. 2.3FireworksAlgorithm TheFireworksAlgorithm(FWA)isapopulation-basedoptimizatio