基于卷积神经网络的遥感图像分类研究.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于卷积神经网络的遥感图像分类研究.docx
基于卷积神经网络的遥感图像分类研究基于卷积神经网络的遥感图像分类研究摘要:近年来,随着遥感技术的发展和遥感图像数据的快速增长,遥感图像分类成为了一个热门的研究领域。卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种在图像分类任务中表现优秀的深度学习方法。本论文针对遥感图像分类问题,基于卷积神经网络进行了深入的研究与分析。首先,介绍了遥感图像分类的背景和意义,并总结了相关的研究现状。然后,详细介绍了卷积神经网络的原理和结构,并分析了其在遥感图像分类中的优势。接下来,提出了一种
基于卷积神经网络的遥感图像分类算法研究.docx
基于卷积神经网络的遥感图像分类算法研究基于卷积神经网络的遥感图像分类算法研究摘要:随着遥感技术的快速发展,遥感图像的获取与应用取得了突破性的进展。遥感图像分类是一项常见的遥感图像处理任务,其目的是将遥感图像中的每个像素点分配到不同的地物类别中。传统的遥感图像分类方法通常依赖于人工设计的特征提取方法,这在对大规模遥感图像的处理中效果不佳。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为一种深度学习方法,具有自动学习特征的能力,因此成为遥感图像分类的热门研究方向。本论文旨在
基于卷积神经网络的遥感图像分类.docx
基于卷积神经网络的遥感图像分类随着遥感技术的发展,遥感图像在各个领域的应用也越来越广泛。其中,遥感图像分类是遥感技术的一个重要分支,其应用包括自然资源调查、城市规划、农业管理等众多领域。然而,遥感图像分类的精度和效率一直是人们关注的焦点和挑战。随着深度学习的兴起,基于卷积神经网络的遥感图像分类方法应运而生,它在提高分类精度、降低分类误差等方面表现出了良好的效果,逐渐成为遥感图像分类领域的研究热点。本篇论文将首先介绍遥感图像分类的背景和意义,然后详细介绍卷积神经网络在遥感图像分类中的应用,并分析其优缺点、技
基于卷积神经网络的遥感图像场景分类的开题报告.docx
基于卷积神经网络的遥感图像场景分类的开题报告一、选题背景及意义遥感技术作为获取地球表面信息的技术之一,在环境、农业、城市规划、能源等领域有着广泛的应用。然而,遥感图像数据量庞大,从中获取有效信息需要高度的技术和计算力支持。场景分类是遥感图像处理中的一个重要任务,即将遥感图像中的像素点分类为不同的场景类别,如道路、建筑物、水域、草地等,为进一步遥感图像应用提供基础数据。传统的场景分类方法基于特征提取和机器学习算法,但是因为遥感图像具有复杂的空间信息结构和多尺度特征,传统方法往往难以发挥效果。卷积神经网络(C
基于自补偿卷积神经网络的遥感场景图像分类方法.pdf
基于自补偿卷积神经网络的遥感场景图像分类方法,本发明涉及遥感场景图像分类方法。本发明的目的是为了解决现有方法无法实现模型分类精度和运行速度的均衡,不能使分类精度和运行速度同时达到最优的问题。过程为:步骤一、采集高光谱图像数据集和相对应的标签向量数据集;步骤二、建立自补偿卷积神经网络;步骤三、将高光谱图像数据集和相对应的标签向量数据集输入到建立的自补偿卷积神经网络中,进行迭代优化,得到最优自补偿卷积神经网络;步骤四、向最优自补偿卷积神经网络中输入待测高光谱图像进行分类结果预测。本发明用于遥感场景图像分类领域