预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

分解策略型多目标进化算法中的自适应机制研究 Title:ResearchontheAdaptiveMechanisminDecomposition-basedMulti-objectiveEvolutionaryAlgorithms Abstract: Decomposition-basedmulti-objectiveevolutionaryalgorithms(DMOEA)havegainedsignificantattentioninsolvingcomplexoptimizationproblemswithmultipleconflictingobjectives.ThesealgorithmsefficientlyexploretheParetofrontbydecomposingtheproblemintoasetofsubproblemsusingaweightvector.However,theperformanceofDMOEAsheavilyreliesonthechoiceofweightvectors,whichbecomeschallengingwhenfacedwithproblemswithdynamicorunknownParetofronts.Toaddressthischallenge,thispaperfocusesontheresearchandanalysisofadaptivemechanismsinDMOEAs,aimingtoimprovethealgorithms'convergenceanddiversityinvaryingenvironments.Variousadaptivestrategies,suchasadaptiveweightvectoradjustmentsandenvironmentalselectiontechniques,areinvestigatedanddiscussed.TheexperimentalresultsdemonstratetheeffectivenessoftheproposedadaptivemechanismsinenhancingtherobustnessandefficiencyofDMOEAs. 1.Introduction: 1.1BackgroundandSignificance: Multi-objectiveoptimizationproblems(MOPs)involveoptimizingmultipleconflictingobjectives,andoftenlackasinglegloballyoptimalsolution.DMOEAshaveemergedandproventobeeffectiveinsolvingMOPsbydecomposingtheproblemintoasetofsubproblems.However,thesealgorithmsoftenrequiremanualadjustmentofweightvectorstoachievegoodperformance. 1.2ResearchObjectives: TheobjectiveofthisresearchistoinvestigateanddevelopadaptivemechanismswithinDMOEAstoaddressthechallengesofstaticanddynamicParetofronts,andimprovetheconvergenceanddiversityofthealgorithms.Thefocusisonexploringadaptiveweightvectoradjustmentandenvironmentalselectiontechniquestoimprovethealgorithms'performance. 2.RelatedWork: Thissectionprovidesanoverviewofstate-of-the-artDMOEAsandhighlightsthechallengesarisingfromstaticanddynamicParetofronts.Additionally,itdiscussesexistingadaptivemechanismsandtheirlimitations. 3.AdaptiveWeightVectorAdjustment: 3.1StaticWeightVectorAdaptation: Thissubsectionexploresvariousapproachestoadaptstaticweightvector