预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

具有线性,非线性阻尼项和源项的波动方程解的爆破 Introduction Thewaveequationisamathematicalmodelthatdescribesthepropagationofwaves.Itisusedinavarietyoffields,includingphysics,engineering,andgeophysics.Thewaveequationincludestermsthatrepresentthelinearandnonlineareffectsofdamping,aswellassourcetermsthatcanrepresenttheinfluenceofexternalforces.Inthispaper,wewillconsiderthesolutionofthewaveequationwithdampingandsourceterms,focusingonthecaseofanexplosivesource. TheWaveEquationwithDampingandSourceTerms Thegeneralformofthewaveequationwithdampingandsourcetermsis: ∂²u/∂t²-c²∇²u-α∂u/∂t-β(u-φ(x,t))=f(x,t) Whereu(x,t)isthewavefunction,representingthedisplacementorpressureatpositionxandtimet,cisthewavespeed,αisthedampingcoefficient,βisthenonlineardampingcoefficient,φ(x,t)isaknownfunctionrepresentingthenonlineardampingeffect,andf(x,t)isasourcetermrepresentingtheexternalforcesactingonthesystem. Tosolvethisequation,weneedtofindthefunctionu(x,t)thatsatisfiestheequationforallxandt.Thiscanbedoneusingavarietyofnumericalmethods,includingfinitedifference,finiteelement,andspectralmethods.Inthispaper,wewillfocusonthefinitedifferencemethod. FiniteDifferenceMethod Thefinitedifferencemethodinvolvesdiscretizingthedomainofthewaveequationintoagridofpoints,andapproximatingthederivativesintheequationusingfinitedifferences.Thetimedomainisalsodiscretizedintoasequenceoftimesteps.Thisresultsinasetofalgebraicequations,whichcanbesolvedusingiterativemethodssuchastheGauss-SeidelorJacobimethod. Toapplythefinitedifferencemethodtothewaveequationwithdampingandsourceterms,wefirstdiscretizethespatialdomainintoagridofNpoints,withaspacingofh.WealsodiscretizethetimedomainintoasequenceofMtimesteps,withatimespacingofk. Thewavefunctionu(x,t)isthenapproximatedbyadiscretefunctionu_ij,representingthevalueofuatthepoint(i,j),wherei=1,...,Nrepresentsthespatialindex,andj=1,...,Mrepresentsthetemporalindex.Thediscretefunctionu_ijisgivenby: u_ij≈u(ih,jk) Similarly,thesourcetermf(x,t)isapproximatedbyadiscretefunctionf_ij,andthenonlineardampingtermβ(u