数学人教版必修3(B)几何概型.doc
书生****12
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学几何概型人教版必修3B.doc
用心爱心专心几何概型教学目标:初步体会几何概型的意义。教学重点:初步体会几何概型的意义。教学过程:1.古典概型要求样本点总数为有限.若是有无限个样本点特别是连续无限的情况虽是等可能的也不能利用古典概型.但是类似的算法可以推广到这种情形.若样本空间是一个包含无限个点的区域Ω(一维二维三维或n维)样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域当它们的测度(长度面积体积…)相等时样本点落在这两区域上的概率相等而与形状和位置都无关”.在这种理解下若记事
高中数学几何概型人教版必修3B.doc
用心爱心专心几何概型教学目标:初步体会几何概型的意义。教学重点:初步体会几何概型的意义。教学过程:1.古典概型要求样本点总数为有限.若是有无限个样本点,特别是连续无限的情况,虽是等可能的,也不能利用古典概型.但是类似的算法可以推广到这种情形.若样本空间是一个包含无限个点的区域Ω(一维,二维,三维或n维),样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,样本点落在这两区域上的概率相等,而与形状和位置都无关”.在
高中数学几何概型1 课件人教版必修3B.ppt
几何概型教学目标:2.射箭比赛的箭靶是涂有五个彩色的分环.从外向内为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率是多少?如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.例1.取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.例2.两根相距8m的木
(中小学教案)高中数学几何概型人教版必修3B.doc
用心爱心专心几何概型教学目标:初步体会几何概型的意义。教学重点:初步体会几何概型的意义。教学过程:1.古典概型要求样本点总数为有限.若是有无限个样本点,特别是连续无限的情况,虽是等可能的,也不能利用古典概型.但是类似的算法可以推广到这种情形.若样本空间是一个包含无限个点的区域Ω(一维,二维,三维或n维),样本点是区域中的一个点.此时用点数度量样本点的多少就毫无意义.“等可能性”可以理解成“对任意两个区域,当它们的测度(长度,面积,体积,…)相等时,样本点落在这两区域上的概率相等,而与形状和位置都无关”.在
数学人教版教材必修3B古典概型ppt 课件.ppt
古典概型例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?上述试验和例1的共同特点是:(1)试验总所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等我们将具有这两个特点的概率模型称为古典概率模型,简称古典概率。思考?对于古典概型,任何事件的概率为:P(A)=A包含的基本事件的个数基本事件的总数例2单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案。如果考生掌握了考察的内容,它可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,