人教版高二数学各章知识点.docx
天马****23
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
人教版高二数学各章知识点.docx
人教版高二数学各章知识点公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-
人教版高二数学各章知识点.docx
人教版高二数学各章知识点公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-
人教版高二数学各章知识点.docx
人教版高二数学各章知识点公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-
(完整word)人教版高二数学上册各章节知识点-推荐文档.doc
高中家教经验总结提纲NUMPAGES17不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a·b|=|a|·|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
(完整word)人教版高二数学上册各章节知识点-推荐文档.doc
高中家教经验总结提纲NUMPAGES17不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4)(乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a·b|=|a|·|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)