预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初二数学知识点沪科版 1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离一样的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的全部点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理假如三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形初二数学三角形学问点归纳直角三角形◆备考兵法1.正确区分勾股定理与其逆定理,把握常用的勾股数.2.在解决直角三角形的有关问题时,应留意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.3.在解决直角三角形的相关问题时,要留意题中是否含有特别角(30°,45°,60°).若有,则应运用一些相关的特别性质解题.4.在解决很多非直角三角形的计算与证明问题时,经常通过作高转化为直角三角形来解决.5.折叠问题是新中考(热点)之一,在处理折叠问题时,动手操作,仔细观看,充分发挥空间(想象力),留意折叠过程中,线段,角发生的变化,查找破题思路.三角形的重心已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。证明:依据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。重心的几条性质:1.重心和三角形3个顶点组成的3个三角形面积相等。2.重心到三角形3个顶点距离的平方和最小。3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/34重心到顶点的距离与重心到对边中点的距离之比为2:1。5.重心是三角形内到三边距离之积的点。假如用塞瓦定理证,则极易证三条中线交于一点。初二(数学(学习(方法)))一该记的记,该背的背,不要以为理解了就行有的同学认为,数学不像英语、史地,要背单词、背年月、背地名,数学靠的是才智、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。因此,数学的定义、法则、公式、定理等肯定要记熟,有些能背诵,朗朗上口。比方大家熟识的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,假如背不出这三个公式,将会对今后的学习造成很大的麻烦,由于今后的学习将会大量地用到这三个公式,特殊是初二马上学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。对数学的定义、法则、公式、定理等,理解了的要记住,临时不理解的也要记住,在记忆的根底上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和才智,就可以打出各式各样精致的家具。同样,记不住数学的定义、法则、公式、