预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于贝叶斯网络的酒店火灾概率评估 Abstract TheprobabilityassessmentofhotelfiresbasedonBayesiannetworksisofgreatsignificanceinensuringthesafetyofpeople'slivesandproperty.ByestablishingaBayesiannetworkmodel,theprobabilityofhotelfirescanbeeffectivelyevaluated,andthecausesandinfluencingfactorsoffirescanbeanalyzedtoprovideguidanceforfirepreventionandcontrolmeasures.ThispaperdiscussesthefeasibilityandadvantagesofusingBayesiannetworkstoassesstheprobabilityofhotelfires,andprovidesadetailedintroductiontotheestablishmentandapplicationofthemodel. Keywords:Bayesiannetwork,hotelfire,probabilityassessment,firepreventionandcontrol 1.Introduction Withthedevelopmentofthehotelindustry,thenumberofhotelshasincreasedrapidlyinrecentyears,andthesafetyofhoteloccupancyhasbecomeanimportantconcernforpeople.Inparticular,theoccurrenceofhotelfiresposesagreatthreattothesafetyandlivesofhotelguests,andhascausedseriouseconomicandsociallosses.Thefactorsleadingtohotelfiresarecomplex,andtheimpactonthehotelishuge.Therefore,itisnecessarytoevaluatetheprobabilityofhotelfiresandtakeeffectivemeasurestopreventandcontrolfires. Traditionalmethodsofevaluatingtheprobabilityoffiresoftenrelyonexperienceorstatistics,buttheprobabilityoffiresisaffectedbymanyfactorsandtherelationshipbetweenthesefactorsiscomplex.Bayesiannetworkisapowerfultoolformodelingcomplexrelationshipsbetweenvariablesandpredictingevents.ByconstructingagraphicalmodelofthedependenciesbetweeneventsusingBayesiannetwork,theprobabilityofeventscanbepredictedthroughinference. ThepurposeofthispaperistoexplorethefeasibilityandadvantagesofusingBayesiannetworkstoevaluatetheprobabilityofhotelfires,andtoproposeamethodbasedonBayesiannetworkforhotelfirepreventionandcontrol. 2.Bayesiannetworks 2.1Definitionandstructure Bayesiannetworkisagraphicalmodelthatdescribesthedependenciesbetweenevents.Itconsistsofasetofnodesrepresentingvariablesandasetofdirectededgesindicatingthedependenciesbetweenvariables.ThenodesoftheBayesiannetworkrepresenteventsorvariables,andthedirectededgesrepresentthe