预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于非线性特征工程的短期建筑能耗预测方法 Title:Short-termBuildingEnergyConsumptionPredictionMethodBasedonNonlinearFeatureEngineering Abstract: Accuratepredictionofshort-termbuildingenergyconsumptioniscriticalforenergymanagementandoptimization.However,buildingenergyconsumptionpredictionisachallengingtaskduetothecomplexandnonlinearrelationshipsbetweenvariousfactorsthataffectenergyconsumption.Inthispaper,weproposeanewmethodforshort-termbuildingenergyconsumptionpredictionbasedonnonlinearfeatureengineering.Ourmethodleveragesbothmachinelearningtechniquesanddomainknowledgeinbuildingenergysystemstoextractandengineermeaningfulfeaturesthatcapturethenonlinearityandcomplexityofenergyconsumptionpatternsinbuildings.Specifically,wedevelopafeatureextractionframeworkthatintegratesvariousdatasources,includingbuildingthermodynamics,occupancy,weather,andenergyuse,intoasetofhigh-dimensionalfeaturevectors.Then,weapplyseveralmachinelearningmodels,includingsupportvectorregression,randomforest,andneuralnetwork,totrainandpredictbuildingenergyconsumptionbasedontheengineeredfeatures.Weevaluateourmethodusingreal-worlddatafromseveralbuildings,andcomparethepredictionaccuracyofdifferentmodels.Ourresultsshowthatourmethodsignificantlyoutperformstraditionalmethodsbasedonlinearfeatureengineeringandsimplestatisticalmodels,andachievesstate-of-the-artpredictionaccuracyforshort-termbuildingenergyconsumptionprediction. Keywords:Buildingenergy,Featureengineering,Machinelearning,Nonlinearity,Prediction 1.Introduction Buildingenergyconsumptionaccountsforasignificantportionofglobalenergyconsumption,andisamajorcontributortogreenhousegasemissionsandclimatechange.Accuratepredictionofbuildingenergyconsumptioniscriticalforeffectiveenergymanagementandoptimization,suchasdemand-response,energy-efficientcontrol,andrenewableenergyintegration.However,buildingenergyconsumptionpredictionisachallengingtaskduetothecomplexandnonlinearrelationshipsbetweenvariousfactorsthataffectenergyconsumption,suchasbuildingthermodynamics,occupancy,weather,ande