预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于卡尔曼滤波的优化GM(1,1)模型在建筑物沉降预测中的应用 Abstract Buildingsettlementisacrucialproblemintheconstructionindustry.Predictingthesettlementofbuildingsisessentialtoensurethesafety,stability,anddurabilityofthebuildings.Manymethodshavebeenproposedtopredictbuildingsettlement,outofwhichtheGreySystemTheory(GST)hasbeenwidelyusedduetoitssimplicityandhighaccuracy.However,theGM(1,1)modelofGSThassomedrawbacks,suchasover-dependencyontheinitialvalueofthedataseries,andsensitivitytonoise.Toovercometheseshortcomings,theGM(1,1)modelisoptimizedusingKalmanfilteringinthepresentstudy. Theproposedmodelisappliedtothesettlementpredictionofbuildingsthroughexperimentaldatacollectedfromaconstructionprojectsite.TheresultsofthestudyshowthattheoptimizationoftheGM(1,1)modelusingKalmanFilteringsignificantlyimprovesitsaccuracy.Thefindingsofthisstudyalsodemonstratethattheproposedmodelcaneffectivelyachievelong-termsettlementpredictionofbuildingsandthemodelcanbeusedasanefficienttoolforpredictingbuildingsettlementintheconstructionindustry. Keywords:BuildingSettlement,GreySystemTheory,GM(1,1)model,KalmanFiltering,Long-TermPrediction. Introduction Settlementpredictionisacriticalissueintheconstructionindustry,asitaffectsthelong-termstability,safety,anddurabilityofbuildingsandstructures.Settlementoccursasaresultoftheloadimposedonthebuilding'sfoundation,whichcausesthesoiltocompressandsettle.Ifthesettlementisnotpredictedaccurately,itcanleadtostructuraldamage,safetyhazards,andevenbuildingcollapse.Therefore,predictingthesettlementofbuildingsiscrucialforensuringthelongevityofbuildingsandstructures. TheGreySystemTheory(GST)isadata-drivenmethodthathasbeenwidelyusedforpredictingthebehaviorofcomplexsystems,includingbuildingsettlement.TheGSTisbasedontheprincipleofreducingtheuncertaintyofanunknownsystembytransformingitintoaknownsystemthroughdataprocessing.However,thestandardGM(1,1)modelofGSThassomelimitations,suchasinitialvaluedependencyandsensitivitytonoise. Toovercomethesedrawbacks,theGM(1,1)modelisoptimizedusingKalmanFiltering.