预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于神经网络的中央空调遗传算法优化研究为题目,写不少于1200的论文 Abstract Withtheincreasingdemandforenergy-savingandenvironmentalprotectioninbuildings,theoptimizationofcentralairconditioningsystemshasbecomeahotresearchtopic.Inthispaper,anoptimizationmethodbasedonneuralnetworkandgeneticalgorithmisproposedforcentralairconditioningsystems.Themethodcombinestheadvantagesofneuralnetworksinpatternrecognitionandlearningabilitywiththegeneticalgorithm'sglobalsearchabilityandoptimizationcapability.Theproposedmethodisappliedtotheoptimizationofacentralairconditioningsysteminacommercialbuilding,andtheresultsshowthattheproposedmethodcanimprovetheenergyefficiencyofthesystemcomparedwiththetraditionalcontrolmethod. Keywords:centralairconditioningsystemoptimization,neuralnetwork,geneticalgorithm,energyefficiency. 1.Introduction Centralairconditioningsystemsarewidelyusedinmanybuildingsandhavebecomeanimportantpartofmodernbuildingenergysystems.However,theenergyconsumptionofthesesystemsisstillveryhigh,accountingforasignificantproportionofthetotalenergyconsumptioninbuildings.Therefore,optimizingcentralairconditioningsystemshasgreatpotentialforenergy-savingandenvironmentalprotectioninbuildings. Traditionalcontrolmethodsforcentralairconditioningsystemsusuallyusefixedcontrolrulesorproportional-integral-derivative(PID)controllers.Thesemethodshavesomelimitationsintermsofenergyefficiencyandresponsespeed.Inrecentyears,manyresearchershaveproposedvariousoptimizationmethodsforcentralairconditioningsystems,suchasmodelpredictivecontrol(MPC),fuzzycontrol,andartificialneuralnetwork(ANN)control. Amongthesemethods,ANN-basedcontrolhasattractedmuchattentionduetoitspowerfulpatternrecognitionandlearningability.However,ANN-basedcontrolalonecannotensuretheglobaloptimalsolution,anditmayeasilyfallintolocaloptimalsolutions.Geneticalgorithm(GA)isaglobaloptimizationmethodthatcaneffectivelysolvethisproblem.Therefore,combiningANNandGAcanimprovetheperformanceofthecontrolsystem. Inthispaper,anoptimizationmethodbasedonneuralnetworkandgeneticalgorithm