预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习的单音源语音分离方法研究 Abstract Single-channelspeechseparationwaspreviouslyachallengingtaskinspeechprocessing.Deeplearningtechniqueshavebroughtasignificantbreakthroughinthisfield.Thispaperaimstoexplorethevariousdeeplearning-basedmethodssuitableforseparatingsingle-channelspeechsignals.Thepaperfurtherdiscussesandcomparesthevarioustechniquesforsingle-channelspeechseparationindetail,withspecialattentionbeinggiventotheconvolutionalneuralnetworks(CNNs),recurrentneuralnetworks(RNNs),anddeepneuralnetworks(DNNs)methods.Experimentalresultsdemonstratetheeffectivenessofdeeplearningmethodsinsingle-channelspeechseparation. 1Introduction Single-channelspeechseparationisachallengingtask,whichaimstoextractanyindividualspeechsignalsfromamixedsignalrecordedinasinglechannel.Thistaskisessentialinspeechprocessingtoimprovespeechquality,enhanceeffictivenessofspeechrecognitionsystems,andaidspeechproductiontrainingsystems.Inrecentyears,deeplearningtechniqueshavebecomeincreasinglypopularinspeechprocessingandhaveshownremarkablesuccessesinvariousfields.Thispaperwillfocusonthesedeeplearningtechniquesforsingle-channelspeechseparation. 2Background Thetraditionalspeechseparationmethodsreliedonhandcraftfeatureswithcomplexsignalprocessing.Thesemethodsusedvariousaudioeffectssuchasamplitudemodulation,phaseshifting,andfilteringtechniquestoseparatethespeechsignalsfrombackgroundnoise.Thoughthesemethodswereeffective,theywerenotrobusttovariationsintheinputsignals.Inaddition,thesemethodswerenotsuitableforhandlingcomplexacousticenvironments. Deeplearningtechniquessuchasconvolutionalneuralnetworks(CNNs),recurrentneuralnetworks(RNNs),anddeepneuralnetworks(DNNs)haverevolutionizedthefieldofspeechsignalseparation.Thesemethodsautomaticallyextractfeaturesandlearnthesignalpatternswithouttheneedforanyhandcraftedfeatureextraction.Thesedeeplearningmethodshavealsobeenshowntosuccessfullyhandlecomplexacousticenvironmentswhileproducinghigh-qualityspeechsignals. 3Methods 3.1ConvolutionalNeuralNetworks(CNNs) CNNsareawidely-usedde