预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进粒子群算法的桁架结构优化设计 Improvingparticleswarmalgorithmfortrussstructureoptimizationdesign Abstract Theoptimizationoftrussstructuresplaysanimportantroleinachievingstructuralefficiencyandreducingmaterialcost.Thetraditionaloptimizationmethodssuchasgeneticalgorithmsandgradientdescentmethodsoftenrequirehighcomputationaloverheadandarenotsuitableforlarge-scaleproblems.Thispaperproposesanimprovedparticleswarmalgorithm(PSO)fortheoptimaldesignoftrussstructures.TheproposedalgorithmincorporatestheadaptiveinertiaweightandstochasticmutationintothetraditionalPSOtoenhancethesearchcapabilityandimprovetheconvergencerate.Anumberofbenchmarkproblemswereusedtotesttheperformanceoftheproposedalgorithm,andtheresultsshowedsignificantimprovementoverthetraditionalPSOalgorithm. Introduction Trussstructuresarewidelyusedinmanyengineeringapplications,suchasbridges,buildings,andtowers.Theoptimizationoftrussstructuresisessentialtoachievethemaximumefficiencyandreducematerialcost.Thetraditionaloptimizationmethodssuchasgeneticalgorithmsandgradientdescentmethodsoftensufferfromslowconvergenceandhighcomputationaloverheadwhenappliedtolarge-scaleproblems.Therefore,itisnecessarytodevelopefficientandeffectiveoptimizationalgorithmsfortrussstructureoptimization. ThePSOalgorithmisaswarm-basedoptimizationalgorithmthatwasproposedbyKennedyandEberhartin1995.PSOiswidelyusedinoptimizationproblemsduetoitssimplicityandefficiency.However,traditionalPSOhassomelimitations,suchasprematureconvergenceanddifficultyinfindingtheglobaloptimum.Therefore,manyresearchershaveproposedvariousimprovedPSOalgorithmsfordifferentapplicationsincludingtrussstructureoptimization. Inthispaper,weproposeanimprovedPSOalgorithmfortheoptimaldesignoftrussstructures.TheproposedalgorithmincorporatestheadaptiveinertiaweightandstochasticmutationintothetraditionalPSOtoenhancethesearchcapabilityandimprovetheconvergencerate.Anumberofbenchmarkproblemswereusedtotesttheperformanceoftheproposedalgorithm,andtheresultsshowedsignificantimprovementoverthetraditionalPSO