预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习的计算机图像识别技术研究 Abstract Deeplearninghasbeenacrucialareaofresearchinthefieldofcomputervision.Ithasrevolutionizedtheimagerecognitiontechnologyandhasfoundapplicationsinvariousdomainslikemedicalimaging,autonomousvehicles,surveillance,andsecuritysystems.Thispaperpresentsacomprehensivestudyofdeeplearning-basedimagerecognitiontechniques.WediscussthepopulardeepnetworkarchitectureslikeConvolutionalNeuralNetworks(CNNs),RecurrentNeuralNetworks(RNNs),andtheirvariantslikeResNet,VGG,andLSTM.Wealsoexplorethechallengesintrainingdeepnetworks,andseveralrecentadvancesinnetworkoptimization,regularization,anddataaugmentationtechniques.Finally,wepresentsomerecentapplicationsofdeeplearninginimagerecognitionanddiscussthefuturedirectionsinthefield. Introduction Imagerecognitionistheprocessofidentifyingobjects,scenes,orpatternsindigitalimages.Ithasnumerousapplicationsinvariousfieldslikehealthcare,autonomousvehicles,surveillance,andsecuritysystems.TraditionalimagerecognitionmethodsrelyonhandcraftedfeaturesandshallowmachinelearningmodelslikeSVM,RandomForests,andNaiveBayes.However,thesemethodshavelimitationsinprocessingcomplexanddiverseimages.Recently,deeplearninghasemergedasapromisingapproachtoovercometheselimitationsandachievestate-of-the-artperformanceinimagerecognitiontasks. Deeplearningreferstoasubsetofmachinelearningtechniquesthatusedeepneuralnetworkstomodelhigh-levelabstractionsindata.Thesenetworksconsistofmultiplelayersofinterconnectednodesthatmimicthestructureofthehumanbrain.Withtherecentadvancesincomputingpower,dataavailability,andalgorithmicdevelopments,deeplearninghasachievedremarkableresultsinvariousdomainslikeimagerecognition,speechrecognition,naturallanguageprocessing,androbotics. DeepLearning-BasedImageRecognitionTechniques ConvolutionalNeuralNetworks ConvolutionalNeuralNetworks(CNNs)arethemostpopulardeepnetworkarchitectureforimagerecognition.Theywereinspiredbythestructureofthehumanvisualsystemandconsistofmultiplelayersofconvolutionalandpoolingoperationsfollowedbyfullyconnec