预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于CNN和GRU的混合股指预测模型研究 Abstract Withtheincreasingimportanceofstockindexforecastinginthefinancialindustry,itiscrucialtodevelopaccurateandefficientpredictionmodels.Inthispaper,weproposeahybridstockindexpredictionmodelbasedonConvolutionalNeuralNetwork(CNN)andGatedRecurrentUnit(GRU).TheproposedmodelusesCNNtoextractfeaturesandGRUtomodelthetemporaldependenciesinthedata.Toevaluatetheperformanceofthemodel,weconductexperimentsontheS&P500indexandcompareourresultswiththoseobtainedfromotherpopularmodels.Theexperimentalresultsdemonstratethatourproposedmodeloutperformsothermodelsintermsofaccuracy,robustness,andcomputationalefficiency. Introduction Stockindexpredictionhasbecomeachallengingandimportanttaskinthefinancialindustryduetoitspotentialimpactsonthedecision-makingprocessofinvestors.Accuratepredictionofstockindexcanhelpinvestorstomakeinformeddecisionsaboutthebuyingandsellingofstocks.Therefore,variouspredictionmodelshavebeenproposedinrecentyears. Recently,deeplearningapproaches,suchasConvolutionalNeuralNetwork(CNN)andGatedRecurrentUnit(GRU),havebeensuccessfullyappliedtovariouspredictionproblems.CNNhasbeenwidelyusedforimagerecognitiontasksduetoitsabilitytocapturelocalandglobalfeatures.Furthermore,GRUhasbeenshowntobeeffectiveinmodelingthetemporaldependenciesinsequentialdata. Inthispaper,weproposeahybridstockindexpredictionmodelbasedonCNNandGRU.TheproposedmodelusesCNNtoextractfeaturesfromtheinputdataandGRUtocapturethetemporaldependenciesinherentinstockindexdata.Theresultingmodelprovidesapowerfultoolforaccurateandefficientstockindexprediction. RelatedWork Awiderangeofapproacheshasbeenproposedforstockindexprediction.Traditionalmethods,suchasAutoregressiveIntegratedMovingAverage(ARIMA)andExponentialSmoothing(ES),havebeenwidelyusedfortimeseriesforecasting.However,thesemethodsrequireaseriesofassumptionsthatmaynotbevalidinreal-worldscenarios,thuslimitingtheiraccuracy. Recently,severalmachinelearningmodels,includingdecisiontrees,supportvectormachines,andartificialneuralnetworks,havebeenap