预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于TRNSYS与深度学习模型的近零能耗建筑系统能耗与负荷预测 Abstract Withtheincreasingdemandforenergy-efficientbuildings,thepredictionofenergyconsumptionandloadofbuildingshasbecomeacriticalissue.Inthispaper,ahybridmodelbasedonTRNSYSanddeeplearningisproposedtopredicttheenergyconsumptionandloadofnearlyzero-energybuildings(nZEBs).TheTRNSYSmodelisusedtosimulatethebuilding'senergyperformance,whilethedeeplearningmodelisappliedtooptimizethepredictionaccuracy.Theproposedmodelcanhelpbuildingmanagerstooptimizeenergymanagementstrategies,reduceenergyconsumption,andachievethegoalofzero-energybuildings. Introduction Nearlyzero-energybuildings(nZEBs)arebuildingsthathaveaveryhighenergyperformancelevelandcomplywiththeenergyrequirementsoftheEuropeanUnion'sEnergyPerformanceofBuildingsDirective.Thesebuildingsaredesignedtoconsumelessenergythantheygeneratethroughrenewablesources,suchassolarorwindpower.Withtheincreasingimportanceofenergyefficiencyinbuildings,therehasbeenagrowinginterestindevelopingmethodstopredicttheenergyconsumptionandloadofnZEBs.Accuratepredictionofenergyconsumptionandloadcanhelpbuildingmanagersoptimizeenergymanagementstrategies,reduceenergyconsumption,andimprovetheoverallperformanceofnZEBs. TRNSYS(TransientSystemSimulationTool)isawidelyusedsoftwaretoolforsimulatingtheenergyperformanceofbuildings.Itconsistsofacollectionofcomponentmodelsthatrepresentthevarioussubsystemsofabuilding,suchastheheating,cooling,andventilationsystems.WithTRNSYS,itispossibletosimulatetheenergyperformanceofbuildingsundervariousoperatingconditions. Deeplearningisasubfieldofmachinelearningthatusesartificialneuralnetworkstomodelcomplexrelationshipsbetweeninputandoutputdata.Deeplearninghasbeenwidelyusedforenergy-relatedapplications,suchasloadforecastingandenergyconsumptionprediction. Inthispaper,weproposeahybridmodelthatcombinesTRNSYSanddeeplearningtopredicttheenergyconsumptionandloadofnZEBs.TheTRNSYSmodelisusedtosimulatetheenergyperformanceofthebuilding,whilethedeeplearningmodelisappliedtooptimizethepredictionaccuracy. Methodo