预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一类Helmholtz方程混合边值问题解的存在唯一性 Introduction: Helmholtzequationisasecond-orderpartialdifferentialequation,whichhasawiderangeofapplicationsinvariousfields,suchasacoustics,electromagnetics,andfluiddynamics,etc.Theequationarisesinsituationswherewavespropagateinamediumandthemediumdependsonspace.Inthispaper,wewilldiscusstheexistenceanduniquenessofsolutionsforaclassofHelmholtzequationmixedboundaryvalueproblems. MathematicalFormulation: LetΩbeaboundeddomaininR^dwithasmoothboundary∂Ω.TheHelmholtzequationwithawavenumberk>0andaforcingtermf(x)inΩcanbewrittenas: ∆u+k^2u=f(x)inΩ, whereuistheunknownfunction,and∆denotestheLaplaceoperator.Themixedboundaryvalueproblemweconsideristofindu(x)suchthat: (1)∆u+k^2u=f(x)inΩ, (2)∂u/∂n+iku=g(x)on∂Ω, wherendenotestheunitoutwardnormalto∂Ω.Theboundarycondition(2)isamixedboundarycondition,whichinvolvesboththeNeumannandDirichletconditions.Here,g(x)isagivencomplex-valuedfunctionontheboundary∂Ω,whichdeterminestheboundarydata. ExistenceResult: Webeginbyprovingtheexistenceofasolutiontotheabovemixedboundaryvalueproblem.Forthis,weconsidertheweakformulation: (3)∫Ω(∇u·∇v+k^2uv)dx=∫Ωfvdx+∫∂Ω(g-∂u/∂n)vdSforallv∈H^1(Ω), whereH^1(Ω)denotestheSobolevspaceoffunctionsinL^2(Ω)withweakderivativesinL^2(Ω).Notethatthesecondtermontheright-handsideof(3)involvesthetraceofuandtheboundarydatag.Hence,weneedtoensurethatthetraceoperatoriswell-definedandcontinuous. Tothisend,weassumethatg∈H^{1/2}(∂Ω),thespaceoffunctionsinL^2(∂Ω)withasquare-integrableboundarytrace.Then,itcanbeshownthatthereexistsaboundedlinearoperatorT:H^{1/2}(∂Ω)→H^{-1/2}(∂Ω)suchthat: (4)Tu=u|∂Ωforu∈H^1(Ω)∩C(¯Ω), withnorm||Tu||_{H^{-1/2}(∂Ω)}≤C||u||_{H^1(Ω)},whereCisapositiveconstantindependentofu.Moreover,Tiscontinuousandinjective,andhence,wecanidentifyH^{1/2}(∂Ω)withitsimageinH^{-1/2}(∂Ω)viaT. LetV={v∈H^1(Ω):∂v/∂n+ikv∈H^{-1/2}(∂Ω)}bethespaceofadmissibletestfunctionsin(3).Then,(3)definesaboundedlinearfunctionalonV′,thedualspaceofV,andbytheRieszrepresentationtheorem,thereexistsauniquesolutionu∈V⊂H^1(Ω)to(3). Thi