预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

K均值聚类算法初始聚类中心的选取与改进 Title:SelectionandImprovementofInitialClusteringCentersinK-meansClusteringAlgorithm Abstract: Clusteringisawidelyusedtechniqueindataanalysisandpatternrecognition,withK-meansbeingoneofthemostpopularclusteringalgorithms.ThesuccessoftheK-meansalgorithmgreatlydependsontheinitialselectionofclustercenters,whichcansignificantlyimpacttheconvergencespeedandclusteringquality.Thispaperprovidesanin-depthanalysisofvariousmethodsforinitializingclusteringcentersintheK-meansalgorithmandproposesseveraltechniquesforimprovingtheinitializationstep.Theexperimentalresultsdemonstratetheeffectivenessandefficiencyoftheproposedmethods,highlightingtheirpotentialapplicationsindifferentdomains. 1.Introduction: Clusteringisafundamentaltaskindatamining,aimingtogroupdataobjectsintomeaningfulclustersbasedontheirsimilarity.K-meansclustering,asawidelyusedapproach,hasbeenappliedinvariousfields,includingimageprocessing,documentclassification,customersegmentation,andmore.ThekeystepintheK-meansalgorithmistheinitialselectionofclustercenters,whichsignificantlyimpactstheclusteringresults.ThispaperdiscussesdifferenttechniquesforinitializingtheclusteringcentersandpresentsimprovementstoenhancetheperformanceoftheK-meansalgorithm. 2.MethodsforInitialClusteringCenterSelection: 2.1RandomSelection: Thesimplestmethodforselectinginitialclustercentersisrandomassignment.Thisapproachrandomlyassignsdatapointsinthedatasetastheinitialcenters.However,itlacksguaranteesofselectingrepresentativepointsandcanleadtopoorconvergenceandsuboptimalclusteringresults. 2.2K-means++Initialization: K-means++isanimprovedinitializationtechniqueproposedbyArthurandVassilvitskii.Itaimstoselectinitialcentersthatarefarapartfromeachother,increasingthechancesoffindinggoodlocaloptima.K-means++utilizesaprobabilisticapproachthatassignshigherprobabilitiestodatapointsfurtherawayfromexistingclustercenters.Thismethodhasbeenshowntoimprovetheconvergencespeedandclusteringqualitycomparedtorandomselection. 3.ImprovingtheInitializationStep: